Cho a, b, c là độ dài 3 cạnh và x, y, z là độ dài 3 đường phân giác trong tam giác của các góc đối diện với cạnh đó. Chứng minh: \(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}>\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\)
Cho tam giác ABC có độ dài 3 cạnh là a, b, c thỏa mãn: \(\dfrac{ab}{b+c}+\dfrac{bc}{c+a}+\dfrac{ac}{a+b}=\dfrac{ac}{b+c}+\dfrac{ab}{c+a}+\dfrac{bc}{a+b}\). Chứng minh: Tam giác ABC cân
Cho tam giác ABC có độ dài 3 cạnh là a, b, c thỏa mãn: \(\dfrac{ab}{b+c}+\dfrac{bc}{a+c}+\dfrac{ac}{a+b}=\dfrac{ac}{b+c}+\dfrac{ab}{a+c}+\dfrac{bc}{a+b}\). Chứng minh tam giác ABC cân
Cho a, b, c là 3 cạnh của 1 tam giác. Chứng minh: \(1< \dfrac{a}{b+c}+\dfrac{b}{a+c}+\dfrac{c}{a+b}< 2\)
Cho a, b, c là 3 cạnh của 1 tam giác. Chứng minh: \(\dfrac{a}{b+c-a}+\dfrac{b}{c+a-b}+\dfrac{c}{a+b-c}\ge3\)
Cho a, b, c là độ dài 3 cạnh của tam giác và (a+b)(b+c)(c+a)=8abc. chứng minh rằng am giác đã cho là tam giác đều
\(\dfrac{5a+3b}{3a+b+2c}\)+\(\dfrac{5b+3c}{3b+c+2a}\)+\(\dfrac{5c+3a}{3c+a+2b}\)\(\ge4\) a,b,c là độ 3 cạnh tam giác
Gọi a,b,c là độ dài 3 cạnh của 1 tam giác ABC,biết rằng (1+\(\dfrac{b}{a}\))(1+\(\dfrac{c}{b}\))(1+\(\dfrac{a}{c}\))=8.Chứng minh tam giác ABC đều
cho a,b,c là độ dài 3 cạnh của tam giác
cm \(\dfrac{1}{a+b-c}+\dfrac{1}{b+c-a}+\dfrac{1}{a+c-b}>=\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\)