Cho tam giác có độ dài 3 cạnh a,b,c thỏa mãn a3 + b3 + c3= 3abc. Chứng minh tam giác đều
Cho tam giác ABC có độ dài 3 cạnh là a, b, c thỏa mãn: \(\dfrac{ab}{b+c}+\dfrac{bc}{c+a}+\dfrac{ac}{a+b}=\dfrac{ac}{b+c}+\dfrac{ab}{c+a}+\dfrac{bc}{a+b}\). Chứng minh: Tam giác ABC cân
Cho tam giác ABC có độ dài 3 cạnh là a, b, c thỏa mãn: \(\dfrac{ab}{b+c}+\dfrac{bc}{a+c}+\dfrac{ac}{a+b}=\dfrac{ac}{b+c}+\dfrac{ab}{a+c}+\dfrac{bc}{a+b}\). Chứng minh tam giác ABC cân
Cho a, b, c là độ dài 3 cạnh và x, y, z là độ dài 3 đường phân giác trong tam giác của các góc đối diện với cạnh đó. Chứng minh: \(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}>\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\)
Cho a, b, c là độ dài 3 cạnh của tam giác và (a+b)(b+c)(c+a)=8abc. chứng minh rằng am giác đã cho là tam giác đều
cho a,b,c là độ dài 3 cạnh của tam giác : cm: 1/(a+b-c) + 1/(b+c-a) + 1/(c+a-b) >= 1/a + 1/b +1/c Các bạn chỉ mình Dấu bằng xảy ra nghĩa là gì ạ tại sao tìm được dấu bằng ạ
cho a,b,c là độ dài 3 cạnh của 1 Δ c/m
a)\(\dfrac{a}{b+c}\)+\(\dfrac{b}{c+a}+\dfrac{c}{a+b}\)< 2
b)a3+b3+c3+3abc> ab(a+b) + bc(b+c) + ac(a+c)
Cho a,b,c là 3 cạnh của 1 tam giác chứng minh: 1/a+b; 1/b+c; 1/c+a cũng là ba cạnh của 1 tam giác
Cho a,b,c là độ dài 3 cạnh tam giác
Chứng minh \(\dfrac{1}{a+b},\dfrac{1}{c+a},\dfrac{1}{b+c}\) là độ dài 3 cạnh tam giác