\(P=\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}\)
\(\Rightarrow P=\frac{a}{b+c}+1+\frac{b}{a+c}+1+\frac{c}{a+b}+1-3\)
\(\Rightarrow P=\frac{a+b+c}{b+c}+\frac{a+b+c}{a+c}+\frac{a+b+c}{b+c}-3\)
\(\Rightarrow P=\left(a+b+c\right)\left(\frac{1}{a+b}+\frac{1}{a+c}+\frac{1}{b+c}\right)-3\)
\(\Rightarrow P=6.\frac{47}{60}-3=\frac{17}{10}\)