Violympic toán 9

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Nguyễn Ngọc Bảo Quang

Cho a,b,c là các số dương thỏa mãn abc=8. Chứng minh: \(\frac{1}{\sqrt{1+a^3}}+\frac{1}{\sqrt{1+b^3}}+\frac{1}{\sqrt{1+c^3}}\ge1\)

Nguyễn Việt Lâm
5 tháng 3 2020 lúc 11:26

\(\frac{1}{\sqrt{1+a^3}}=\frac{1}{\sqrt{\left(1+a\right)\left(a^2-a+1\right)}}\ge\frac{2}{a^2+2}\)

\(\Rightarrow VT\ge\frac{2}{a^2+2}+\frac{2}{b^2+2}+\frac{2}{c^2+2}\)

Đặt \(\left(a;b;c\right)=\left(2\sqrt{\frac{x}{y}};2\sqrt{\frac{y}{z}};2\sqrt{\frac{z}{x}}\right)\)

\(\Rightarrow VT\ge\frac{y}{2x+y}+\frac{z}{2y+z}+\frac{x}{2z+x}=\frac{y^2}{2xy+y^2}+\frac{z^2}{2yz+z^2}+\frac{x^2}{2zx+x^2}\ge\frac{\left(x+y+z\right)^2}{\left(x+y+z\right)^2}=1\)

Dấu "=" xảy ra khi \(a=b=c=2\)

Khách vãng lai đã xóa

Các câu hỏi tương tự
Angela jolie
Xem chi tiết
Nguyễn Thu Ngà
Xem chi tiết
Nguyễn Bùi Đại Hiệp
Xem chi tiết
Angela jolie
Xem chi tiết
Văn Thắng Hồ
Xem chi tiết
tran xuân phương
Xem chi tiết
Nguyễn Thành Nam
Xem chi tiết
Phác Chí Mẫn
Xem chi tiết
Lê Đình Quân
Xem chi tiết