Violympic toán 9

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Angela jolie

Cho a, b, c là các số dương thỏa mãn a+b+c+2=abc. Chứng minh: \(\frac{1}{\sqrt{ab}}+\frac{1}{\sqrt{bc}}+\frac{1}{\sqrt{ca}}\le\frac{3}{2}\)

Akai Haruma
20 tháng 3 2020 lúc 18:34

Lời giải:
ĐKĐB như thế này sinh ra 1 đẳng thức rất đẹp.

$a+b+c+2=abc\Rightarrow \frac{1}{a+1}+\frac{1}{b+1}+\frac{1}{c+1}=1$

Khi đó, áp dụng BĐT Bunhiacopxky:

\(\left(\frac{1}{a+1}+\frac{1}{b+1}+\frac{1}{c+1}\right)\left(\frac{a+1}{a}+\frac{b+1}{b}+\frac{c+1}{c}\right)\geq \left(\frac{1}{\sqrt{a}}+\frac{1}{\sqrt{b}}+\frac{1}{\sqrt{c}}\right)^2\)

\(\Leftrightarrow \left(\frac{a+1}{a}+\frac{b+1}{b}+\frac{c+1}{c}\right)\geq \left(\frac{1}{\sqrt{a}}+\frac{1}{\sqrt{b}}+\frac{1}{\sqrt{c}}\right)^2\)

\(\Leftrightarrow 3+\sum \frac{1}{a}\geq \sum \frac{1}{a}+2\sum \frac{1}{\sqrt{ab}}\Leftrightarrow \sum \frac{1}{\sqrt{ab}}\leq \frac{3}{2}\) (đpcm)

Dấu "=" xảy ra khi $a=b=c=2$

Khách vãng lai đã xóa

Các câu hỏi tương tự
𝓓𝓾𝔂 𝓐𝓷𝓱
Xem chi tiết
Nguyễn Bùi Đại Hiệp
Xem chi tiết
Lê Đình Quân
Xem chi tiết
Nguyễn Thành Nam
Xem chi tiết
Nguyễn Thị Yến Nga
Xem chi tiết
Lê Đình Quân
Xem chi tiết
Doãn Hoài Trang
Xem chi tiết
Nguyễn Minh Nguyệt
Xem chi tiết
Văn Thắng Hồ
Xem chi tiết