1)Cho A,B,C>0.CMR:\(\dfrac{AB}{C}+\dfrac{AC}{B}+\dfrac{BC}{A}>A+B+C\)
2)CMR:A2+B2+C2+D2+4\(\ge2\left(A+B+C+D\right)\)
Cho ba so a,b,c = 0. Tinh gia tri cua A=a2/bc+b2/ac+c2/ab
cho a , b la hai so thuc bat ky co tong bang 1. chung minh rang : a^3+b^3>=1/4
Cho ba số dương a,b,c thỏa mãn \(a^2+b^2+c^2=1\) . Chứng minh rằng:
\(\dfrac{a^2}{1+b-a}+\dfrac{b^2}{1+c-b}+\dfrac{c^2}{1+a-c}\) \(\geq\) 1
Cho \(\dfrac{a^3}{a^2+ab+b^2}+\dfrac{b^3}{b^2+bc+c^2}+\dfrac{c^3}{c^2+ca+a^2}\).Tính M=\(\dfrac{a^3+b^3}{a^2+ab+b^2}+\dfrac{b^3+c^3}{b^2+bc+c^2}+\dfrac{c^3+a^3}{c^2+ca+a^2}\)
Cho 3 số a , b , c khác 0 thỏa mãn : \(\dfrac{a^2}{b^2}+\dfrac{b^2}{c^2}+\dfrac{c^2}{a^2}=\dfrac{a}{c}+\dfrac{c}{b}+\dfrac{b}{a}\)
Chứng minh rằng : a=b=c
cho a + b + c = 3 a b c 0. chứng minh rằng a/(1+b^2)+b/(1+c^2)+c/(1+a^2) =3/2
Cho \(\frac{a\left(c-b\right)}{b-c}+\frac{b\left(a-c\right)}{c-a}+\frac{c\left(b-a\right)}{a-b}=3\)
CMR : \(\frac{a}{\left(b-c\right)^2}+\frac{b}{\left(c-a\right)^2}+\frac{c}{\left(a-b\right)^2}=0\)
Cho a,b,c>0 và a+b+c=3
Tìm GTNN A= a2/b+c + b2/c+a + c2/a+b