1/1+a=(1-1/1+b)+(1-1/1+c)=b/1+b +c/1+c rồi cosi
tương tự rồi nhân cả 3 biểu thức lại với nhau
suy ra max abc=1/8⇔a=b=c=1/2
1/1+a=(1-1/1+b)+(1-1/1+c)=b/1+b +c/1+c rồi cosi
tương tự rồi nhân cả 3 biểu thức lại với nhau
suy ra max abc=1/8⇔a=b=c=1/2
Cho hai số thực dương x, y thỏa mãn: x.y=2. Tìm giá trị nhỏ nhất của biểu thức: \(P=\dfrac{1}{x}+\dfrac{1}{2y}+\dfrac{1}{x+2y}\)
Cho 2 số thực a, b thỏa mãn ab ≠ 0, a ≠ 1, b ≠ 1 và a + b = 1. Tính giá trị của biểu thức
\(P=\dfrac{a}{b^3-1}-\dfrac{b}{a^3-1}+\dfrac{2\left(a-b\right)}{a^2b^2+3}\)
Cho 2 số thực a, b thỏa mãn ab ≠ 0, a ≠ 1, b ≠ 1 và a + b = 1. Tính giá trị của biểu thức
\(P=\dfrac{a}{b^3-1}-\dfrac{b}{a^3-1}+\dfrac{2\left(a-b\right)}{a^2b^2+3}\)
1.Cho \(a,b,c,d\) là các số nguyên thỏa mãn \(a^3+b^3=2\left(c^3-d^3\right)\) . Chứng minh rằng a+b+c+d chia hết cho 3
2.Cho ba số dương a,b,c thỏa mãn abc=1. Chứng minh rằng \(\dfrac{1}{a^3\left(b+c\right)}+\dfrac{1}{b^3\left(c+a\right)}+\dfrac{1}{c^3\left(a+b\right)}\ge\dfrac{3}{2}\)
tìm giá trị lớn nhất của biểu thức \(P=\dfrac{a-1}{a}+\dfrac{b-1}{b}+\dfrac{c-1}{c}\) với a;b;c dương và a+b+c=6
a) tìm giá trị nhỏ nhất của biểu thức
Q = x2+2y2+2xy-2x+2015
b) cho a,b,c>0 thỏa mãn ABC= 1
Cminh: \(\dfrac{1}{a^2+2b^2+3}+\dfrac{1}{b^2+2c^2+3}+\dfrac{1}{c^2+2a^2+3}< =\dfrac{1}{2}\)
Cho 3 số dương a, b, c thỏa mãn: \(a+b+c=\dfrac{1}{2}\) và \(a^2+b^2+c^2+ab+bc+ca=\dfrac{1}{6}\)
Tính giá trị biểu thức \(P=\dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b}\)
Cho a,b c là các số dương và a+b+c=3.
Tìm giá trị nhỏ nhất của biểu thức: \(A=\dfrac{a^{2014}+2013}{b^2+1}+\dfrac{b^{2014}+2013}{c^2+1}+\dfrac{c^{2014}+2013}{a^2+1}\)
Cho a;b;c là các số thực dương thỏa mãn: a+b+c=3.
Tìm Max của: \(A=\dfrac{1}{a+3}+\dfrac{1}{b+3}+\dfrac{1}{c+3}-\dfrac{1}{3\left(ab+bc+ac\right)}\)
Nhờ các bạn Giúp mk với ạ Mk xin cảm ơn