Cho a,b,c là độ dài ba cạnh của tam giác . Chứng minh rằng :
\(\dfrac{a^2+b^2-c^2}{2ab}+\dfrac{b^2+c^2-a^2}{2bc}+\dfrac{c^2+a^2-b^2}{2ca}>1\)
Cho a, b, c là ba số dương thoả mãn abc = 1. Chứng minh rằng: \(\dfrac{1}{a^3\left(b+c\right)}+\dfrac{1}{b^3\left(c+a\right)}+\dfrac{1}{c^3\left(a+b\right)}\ge\dfrac{3}{2}\)
cho a,b,c là độ dài ba cạnh của tam giác chứng minh rằng :
\(\dfrac{a^2+2bc}{b^2+c^2}+\dfrac{b^2+2ac}{c^2+a^2}+\dfrac{c^2+2ab}{a^2+b^2}>3\)
mọi người giúp mình với
Cho 3 số dương a, b, c. Chứng minh rằng:
\(\dfrac{1}{\dfrac{1}{a}+\dfrac{1}{b}}+\dfrac{1}{\dfrac{1}{b}+\dfrac{1}{c}}+\dfrac{1}{\dfrac{1}{c}+\dfrac{1}{a}}\le\dfrac{a+b+c}{2}\)
Cho a> 0, b> 0, c>0 và \(\dfrac{1}{1+a}+\dfrac{1}{1+b}+\dfrac{1}{1+c}\)> hoặc = 2
Chứng minh a.b.c < hoặc = 8
cho 3 số a,b,c \(\ne0\) và ab+bc+ac = 0 tính giá trị biểu thức
A= \(\dfrac{\dfrac{a^2}{a^2+2bc}+\dfrac{b^2}{b^2+2ac}+\dfrac{c^2}{c^2+2ab}}{\dfrac{bc}{a^2+2bc}+\dfrac{ac}{b^2+2ac}+\dfrac{ab}{c^2+2ab}}\)
a0Cho (a+b+c)2=a2+b2+c2và a,b,c là 3 số khác 0
Chứng minh rằng \(\dfrac{1}{a^3}+\dfrac{1}{b^3}+\dfrac{1}{c^3}=\dfrac{3}{abc}\)
Cho a.b.c=1 và \(a+b+c=\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\)
Chứng minh tồn tại 1 trong 3 số a,b,c =1
Cho a> 0, b> 0, c>0 và \(\dfrac{1}{1+a}+\dfrac{1}{1+b}+\dfrac{1}{1+c}\)> hoặc = 2
Chứng minh a.b.c < hoặc = 8
Giúp mình vs ạ . đang cần gấp lm ạ