Ôn tập cuối năm phần số học

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Dương Thị Trà My

Cho a> 0, b> 0, c>0 và \(\dfrac{1}{1+a}+\dfrac{1}{1+b}+\dfrac{1}{1+c}\)> hoặc = 2

Chứng minh a.b.c < hoặc = 8

TFBoys
12 tháng 8 2017 lúc 20:01

Sửa đề: Chứng minh \(abc\le\dfrac{1}{8}\)

Ta có

\(\dfrac{1}{1+a}=\left(1-\dfrac{1}{1+b}\right)+\left(1-\dfrac{1}{1+c}\right)\)

\(=\dfrac{b}{1+b}+\dfrac{c}{1+c}\ge2\sqrt{\dfrac{bc}{\left(1+b\right)\left(1+c\right)}}\) (1)

Tương tự \(\dfrac{1}{1+b}\ge2\sqrt{\dfrac{ca}{\left(1+c\right)\left(1+a\right)}}\) (2)

\(\dfrac{1}{1+c}\ge2\sqrt{\dfrac{ab}{\left(1+a\right)\left(1+b\right)}}\) (3)

Nhân (1), (2), (3) với nhau:

\(\dfrac{1}{\left(1+a\right)\left(1+b\right)\left(1+c\right)}\ge\dfrac{8abc}{\left(1+a\right)\left(1+b\right)\left(1+c\right)}\)

\(\Rightarrow abc\le\dfrac{1}{8}\)

Đẳng thức xảy ra \(\Leftrightarrow a=b=c=\dfrac{1}{2}\)


Các câu hỏi tương tự
Trà My
Xem chi tiết
Phan Thiên
Xem chi tiết
wcdccedc
Xem chi tiết
Phượng Hoàng
Xem chi tiết
Some one
Xem chi tiết
Quách Trần Gia Lạc
Xem chi tiết
An Trịnh Hữu
Xem chi tiết
ha thi thuy
Xem chi tiết
noname
Xem chi tiết