cho a,b,c>0 và \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\le16\left(a+b+c\right)\). Chứng minh rằng:
\(\frac{1}{\left(a+b+2\sqrt{a+c}\right)^3}+\frac{1}{\left(b+c+2\sqrt{b+a}\right)^3}+\frac{1}{\left(c+a+2\sqrt{b+c}\right)^3}\le\frac{8}{9}\)
Chứng minh rằng: \(\left(a+\frac{1}{b}\right).\left(b+\frac{1}{c}\right).\left(c+\frac{1}{a}\right)\ge\left(\frac{10}{3}\right)^2\)với a,b,c >0 và a+b+c=1.
Chứng minh rằng với mọi a, b, c > 0 ta có :
\(\frac{a^4}{1+a^2b}+\frac{b^4}{1+b^2c}+\frac{c^4}{1+c^2a}\ge\frac{abc\left(a+b+c\right)}{1+abc}\)
Cho a,b,c>0 , chứng minh rằng:
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge3\left(\frac{1}{a+2b}+\frac{1}{b+2c}+\frac{1}{c+2a}\right)\)
Cho các số dương a,b,c thỏa mãn a+b+c=1. Chứng minh rằng:\(\frac{a}{a+b^2}+\frac{b}{b+c^2}+\frac{c}{c+a^2}\le\frac{1}{4}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)
cho a, b, c là các số thực dương thảo mãn abc=1 chứng minh rằng \(\frac{a}{\left(a+1\right)\left(b+1\right)}+\frac{b}{\left(a+1\right)\left(c+1\right)}+\frac{c}{\left(b+1\right)\left(a+1\right)}\ge\frac{3}{4}\)
Cho a,b,c>0 thỏa mãn abc=1. Chứng minh
\(\frac{a}{\left(a+1\right)\left(b+1\right)}+\frac{b}{\left(b+1\right)\left(c+1\right)}+\frac{c}{\left(c+1\right)\left(a+1\right)}\ge\frac{3}{4}\)
Cho ba số thực dương a, b, c. Chứng minh rằng
\(\left(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\right)^2\ge\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)
Cho a,b,c khác 0 thỏa mãn \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=2\) và \(\frac{2}{bc}-\frac{1}{c^2}=4\)
a) Chứng minh rằng: \(\left(\frac{1}{a}+\frac{1}{c}\right)^2+\left(\frac{1}{b}+\frac{1}{c}\right)^2=0\)
b) Tính giá trị biểu thức \(Q=\left(a+2b+c\right)^{2019}\)