Bạn tham khảo:
Bạn tham khảo:
Cho a, b, c > 0
Cmr: \(\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}\ge\sqrt{a^2-ab+b^2}+\sqrt{b^2-bc+c^2}+\sqrt{c^2-ca+a^2}\)
cho a,b,c > 0 thỏa mãn ab+bc+ca=1. Cmr:
\(a+b+c+\frac{ab}{b+c}+\frac{bc}{c+a}+\frac{ca}{a+b}\ge\frac{3\sqrt{3}}{2}\)
cho a,b,c > 0 thỏa mãn \(a^2+b^2+c^2=1\) . Cmr:
\(\sqrt{\frac{ab+2c^2}{1+ab-c^2}}+\sqrt{\frac{bc+2a^2}{1+bc-a^2}}+\sqrt{\frac{ca+2b^2}{1+ac-b^2}}\ge2+ab+bc+ca\)
cho a,b,c > 0 thỏa mãn ab+bc+ca = 1. Cmr:
\(\frac{2a}{\sqrt{1+a^2}}+\frac{b}{\sqrt{1+b^2}}+\frac{c}{\sqrt{1+c^2}}\)
cho a,b,c >0 và a+b+c=3 . cmr :
\(\frac{a}{\sqrt{b+c+2}}+\frac{b}{\sqrt{a+c+2}}+\frac{c}{\sqrt{a+b+2}}\ge\frac{3}{5}\)
cho các số thực dương a,b,c thỏa mãn \(\sqrt{a}+\sqrt{b}+\sqrt{c}=1\)
cmr \(\frac{a^2+bc}{\sqrt{2a^2\left(b+c\right)}}+\frac{b^2+ca}{\sqrt{2b^2\left(c+a\right)}}+\frac{c^2+ab}{\sqrt{2c^2\left(a+b\right)}}\ge1\)
cho a,b,c là số thực dương thỏa mãn ab+bc+ac=abc
CMR: \(\frac{\sqrt{b^2+2a^2}}{ab}+\frac{\sqrt{c^2+2b^2}}{bc}+\frac{\sqrt{a^2+2c^2}}{ca}>\sqrt{3}\)
Cho a,b,c>0 thỏa mãn\(\sqrt{ab}+\sqrt{bc}+\sqrt{ca}=1\). CMR
\(\dfrac{a^2}{a+b}+\dfrac{b^2}{b+c}+\dfrac{c^2}{a+b}\ge\dfrac{1}{2}\)
Cho a,b,c>0 thỏa mãn ab+bc+ac=1. CMR \(\frac{a}{\sqrt{1+a^2}}+\frac{b}{\sqrt{1+b^2}}+\frac{c}{\sqrt{1+c^2}}\le\frac{3}{2}\)