Cho a, b, c > 0 và abc = 1. Chứng minh rằng \(\dfrac{1}{a^2.\left(b+c\right)}+\dfrac{1}{b^2.\left(c+a\right)}+\dfrac{1}{c^2.\left(a+b\right)}\ge\dfrac{3}{2}\)
Cho a, b, c > 0. Chứng minh \(\dfrac{a^2}{b^2}+\dfrac{b^2}{c^2}+\dfrac{c^2}{a^2}\ge\dfrac{a}{b}+\dfrac{b}{c}+\dfrac{c}{a}\)
Cho a, b, c, d > 0. Chứng minh rằng:
1.
\(\dfrac{a}{\sqrt{a^2+8bc}}\)+ \(\dfrac{b}{\sqrt{b^2+8ac}}\)+ \(\dfrac{c}{\sqrt{c^2+8ab}}\) ≥ 1
2.
\(\dfrac{a}{b+2c+3d}\)+\(\dfrac{b}{c+2d+3a}\)+\(\dfrac{c}{d+2a+3b}\)+ \(\dfrac{d}{a+2b+3c}\) ≥ \(\dfrac{2}{3}\)
3.
\(\dfrac{a^4}{\left(a+b\right)\left(a^2+b^2\right)}\) + \(\dfrac{b^4}{\left(b+c\right)\left(b^2+c^2\right)}\) + \(\dfrac{c^4}{\left(c+d\right)\left(c^2+d^2\right)}\) + \(\dfrac{d^4}{\left(d+a\right)\left(d^2+a^2\right)}\) ≥ \(\dfrac{a+b+c+d}{4}\)
Bất đẳng thức BuNyaKovSky ( BCS )
Bài 1: Cho x,y, z > 0 thỏa mãn xyz = 1.
Chứng minh rằng:
\(\dfrac{\sqrt{1+x^3+y}^3}{xy}\)+ \(\dfrac{\sqrt{1+x^3+z^3}}{xz}\)+ \(\dfrac{\sqrt{1+y^3+z^3}}{yz}\) ≥ \(3\sqrt{3}\)
Bài 2: Choa, b, c,d > 0 thỏa mãn abcd = 1. CMR:
1) \(\dfrac{a^3}{c^6}\)+ \(\dfrac{c^3}{a^6}\)+ \(\dfrac{b^3}{d^6}\)+ \(\dfrac{d^3}{b^6}\) ≥ \(\dfrac{a^2}{c}\)+ \(\dfrac{c^2}{a}+\dfrac{b^2}{d}+\dfrac{d^2}{b}\)
2) \(\dfrac{a^5b^4}{c^{13}}\) + \(\dfrac{b^5c^4}{d^{13}}\) + \(\dfrac{c^5d^4}{a^{13}}\)+ \(\dfrac{d^5a^4}{b^{13}}\) ≥ \(\dfrac{ab^2}{c^3}+\dfrac{bc^2}{d^3}+\dfrac{cd^2}{a^3}\)+ \(\dfrac{da^2}{b^3}\)
Bài 3: Cho a, b,c ,d > 0. CMR:
\(\dfrac{a^2}{b^5}+\dfrac{b^2}{c^5}+\dfrac{c^2}{d^5}+\dfrac{d^2}{a^5}\) ≥ \(\dfrac{1}{a^3}+\dfrac{1}{b^3}+\dfrac{1}{c^3}+\dfrac{1}{d^3}\)
Bài 4: tìm giá trị nhỏ nhất của biểu thức:
A= x + y biết x, y > 0 thỏa mãn \(\dfrac{2}{x}+\dfrac{3}{y}\) = 1
B= \(\dfrac{ab}{a^2+b^2}\) + \(\dfrac{a^2+b^2}{ab}\) với a, b > 0
Bài 5: Với x > 0, chứng minh rằng:
( x+2 )2 + \(\dfrac{2}{x+2}\) ≥ 3
Giúp mk với, mai mk phải kiểm tra rồi!!
Bài 1: Cho a,b,c>0 thỏa mãn : a+b+c=3.
Chứng minh rằng: \(\dfrac{a^2}{a+b^2}\)+ \(\dfrac{b^2}{b+c^2}\)+ \(\dfrac{c^2}{c+a^2}\) ≥ \(\dfrac{3}{2}\)
Bài 2: Tìm giá trị lớn nhất của biểu thức với x ≥ 0 ; x ≤ \(\dfrac{4}{3}\)
A= 4x3 - 3x2
Bài 3: Cho a,b,c > 0. Chứng minh rằng:
3( ab + bc + ca ) ≤ ( a+ b + c )2
Cho a,b,c>0.Chứng minh rằng:
\(\dfrac{a+b}{a^2+b^2}+\dfrac{b+c}{b^2+c^2}+\dfrac{a+c}{a^2+c^2}\ge\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\)
Help me?!
1)cho a,b,c >0. \(cmr:\dfrac{1}{a^2+bc}+\dfrac{1}{b^2+ca}+\dfrac{1}{c^2+ab}\le\dfrac{a+b+c}{2abc}\)
2) cho a,b,c>0 và a+b+c=1. \(cmr:\left(1+\dfrac{1}{a}\right)\left(1+\dfrac{1}{b}\right)\left(1+\dfrac{1}{c}\right)\ge64\)
3) cho a,b,c>0. \(cme:\dfrac{a^2}{b^2}+\dfrac{b^2}{c^2}+\dfrac{c^2}{a^2}\ge\dfrac{a}{b}+\dfrac{b}{c}+\dfrac{c}{a}\)
4) cho a,b,c>0 .\(cmr:\dfrac{a^3}{b^3}+\dfrac{b^3}{c^3}+\dfrac{c^3}{a^3}\ge\dfrac{a^2}{b^2}+\dfrac{b^2}{c^2}+\dfrac{c^2}{a^2}\)
5)cho a,b,c>0. cmr: \(\dfrac{1}{a\left(a+b\right)}+\dfrac{1}{b\left(b+c\right)}+\dfrac{1}{c\left(c+a\right)}\ge\dfrac{27}{2\left(a+b+c\right)^2}\)
Chứng minh các bất đẳng thức sau :
1. a3 - 3a +4 \(\ge\) b3 - 3b ( a\(\ge\)b)
2. \(\dfrac{a^3+b^3}{2}\ge\left(\dfrac{a+b}{2}\right)^3\) ( với a+b>0 )
3. \(\dfrac{a^3+b^3+c^3}{a+b+c}\ge\dfrac{3abc}{a+b+c}\) ( với a+b+c\(\ne\)0 )
Chứng minh các BĐT sau:
a. \(9\left(\dfrac{1}{a+2b}+\dfrac{2}{b+2c}+\dfrac{3}{c+2a}\right)\le\dfrac{7}{a}+\dfrac{4}{b}+\dfrac{7}{c}\)
b. \(\dfrac{1}{a}+\dfrac{2}{b}+\dfrac{3}{c}\ge\dfrac{3}{a+b}+\dfrac{18}{3b+4c}+\dfrac{9}{c+6a}\)
c. \(\dfrac{b+c}{a}+\dfrac{2a+c}{b}+\dfrac{4\left(a+b\right)}{a+c}\ge9\)