Lời giải:
Dùng pp biến đổi tương đương.
Ta có: \(\frac{a}{b^2}+\frac{b}{a^2}+\frac{16}{a+b}\geq 5\left(\frac{1}{a}+\frac{1}{b}\right)\)
\(\Leftrightarrow \left(\frac{a}{b^2}-\frac{1}{b}\right)+\left(\frac{b}{a^2}-\frac{1}{a}\right)+4\left(\frac{4}{a+b}-\frac{1}{a}-\frac{1}{b}\right)\geq 0\)
\(\Leftrightarrow \frac{a-b}{b^2}-\frac{a-b}{a^2}+4\left(\frac{4}{a+b}-\frac{a+b}{ab}\right)\geq 0\)
\(\Leftrightarrow \frac{(a-b)^2(a+b)}{a^2b^2}-\frac{4(a-b)^2}{ab(a+b)}\geq 0\)
\(\Leftrightarrow (a-b)^2\left(\frac{a+b}{a^2b^2}-\frac{4}{ab(a+b)}\right)\geq 0\)
\(\Leftrightarrow \frac{a+b}{a^2b^2}-\frac{4}{ab(a+b)}\geq 0\)
\(\Leftrightarrow \frac{a+b}{ab}-\frac{4}{a+b}\geq 0\Leftrightarrow (a+b)^2-4ab\geq 0\)
\(\Leftrightarrow (a-b)^2\geq 0\) (luôn đúng)
Do đó ta có đpcm.
Dấu bằng xảy ra khi $a=b$