Cho a,b,c là các số thực dương thỏa mãn điều kiện abc=1
Chứng minh rằng : \(P=\dfrac{1}{\left(a+1\right)^2}+\dfrac{1}{\left(b+1\right)^2}+\dfrac{1}{\left(c+1\right)^2}+\dfrac{2}{\left(a+1\right)\left(b+1\right)\left(c+1\right)}\ge1\)
1.Cho \(a,b,c,d\) là các số nguyên thỏa mãn \(a^3+b^3=2\left(c^3-d^3\right)\) . Chứng minh rằng a+b+c+d chia hết cho 3
2.Cho ba số dương a,b,c thỏa mãn abc=1. Chứng minh rằng \(\dfrac{1}{a^3\left(b+c\right)}+\dfrac{1}{b^3\left(c+a\right)}+\dfrac{1}{c^3\left(a+b\right)}\ge\dfrac{3}{2}\)
Cho a,b,,d là các số tự nhiên đối một khác nhau thỏa mãn điều kiện
\(\dfrac{a}{a+b}\)+\(\dfrac{b}{b+c}\)+\(\dfrac{c}{c+d}\)+\(\dfrac{d}{d+a}\)=\(2\)
Chứng minh rằng ac=bd
Chứng minh rằng: Nếu 3 số thực a, b, c thỏa mãn: \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=\dfrac{1}{a+b+c}\) thì trong 3 số đó luôn tồn tại 2 số đối nhau
Cho a, b, c là các số thực dương thỏa mãn \(a^2+b^2+c^2=1\). Chứng minh rằng: \(\dfrac{1}{a^2+b^2}+\dfrac{1}{c^2+a^2}+\dfrac{1}{a^2+b^2}\le\dfrac{a^3+b^3+c^3}{2abc}+3\)
Mọi người giúp em với ạ, chiều em phải nộp rồi ạ T.T
Cho a,b,c≠0 thỏa mán a+b+c=0.Chứng minh rằng:
\(\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)=\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}\)
Cho: \(\dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b}=1\) ( Với điều kiện các mẫu khác 0). Chứng minh: \(\dfrac{a^2}{b+c}+\dfrac{b^2}{c+a}+\dfrac{c^2}{a+b}=0\)
Cho a,b,c là các số thực dương thỏa mãn a+b+c=1
Chứng minh rằng A=\(\dfrac{ab+c}{c+1}+\dfrac{bc+a}{a+1}+\dfrac{ac+b}{b+1}\le1\)
cho 3 số dương a,b,c có tổng bằng 1.chứng minh rằng \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\ge9\)