tính \(A=3\sqrt{5}-\sqrt{\dfrac{1}{5}}+\dfrac{3}{\sqrt{5}-1}\)
\(B=\sqrt{2018^2+2018^22019^2+2019^2}\)
Cho a,b,c là các số thực thỏa mãn \(a+b+c=\sqrt{a}+\sqrt{b}+\sqrt{c}=2\)
CM \(\dfrac{\sqrt{a}}{1+a}+\dfrac{\sqrt{b}}{1+b}+\dfrac{\sqrt{c}}{1+c}=\dfrac{2}{\sqrt{\left(1+a\right).\left(1+b\right)\left(1+c\right)}}\)
Bài 1: Cho A=\(\left(\dfrac{x-y}{\sqrt{x}-\sqrt{y}}+\dfrac{\sqrt{x^3}-\sqrt{y^3}}{y-x}\right):\dfrac{\left(\sqrt{x}-\sqrt{y}\right)^2+\sqrt{xy}}{\sqrt{x}+\sqrt{y}}\)với x≥0; y≥0; x≠y
a) Rút gọn A
b) Chứng minh A≥0
Bài 2:Cho A= \(\dfrac{x\sqrt{x}-1}{x-\sqrt{x}}-\dfrac{x\sqrt{x}+1}{x+\sqrt{x}}+\left(\sqrt{x}-\dfrac{1}{\sqrt{x}}\right).\left(\dfrac{\sqrt{x}+1}{\sqrt{x}-1}+\dfrac{\sqrt{x}-1}{\sqrt{x}+1}\right)\)
với x>0; x≠1
a) Rút gọn A
b)Tìm x để A=6
a) \(\dfrac{a-1}{\sqrt{b}-1}\).\(\sqrt{\dfrac{b-2\sqrt{b}+1}{\left(a-1\right).4}}\) (a,b≠1,b>0)
b) (1+\(\dfrac{a+\sqrt{a}}{\sqrt{a}+1}\)).(1-\(\dfrac{a-\sqrt{a}}{\sqrt{a-1}}\)) (a≠1,a>0)
a) Với \(n\in N\). Chứng minh:
\(\sqrt{\left(n+1\right)^2}+\sqrt{n^2}=\left(n+1\right)^2-n^2\)
b) Cho a,b,c > 0. Chứng minh:
+) Nếu \(a+b+c=\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\) thì a = b = c.
+) \(\dfrac{a}{b}+\dfrac{b}{c}+\dfrac{c}{a}\ge\sqrt{\dfrac{a}{c}}+\sqrt{\dfrac{b}{a}}+\sqrt{\dfrac{c}{b}}\).
Tính :
\(\dfrac{1}{\sqrt{1}-\sqrt{2}}-\dfrac{1}{\sqrt{2}-\sqrt{3}}+\dfrac{1}{\sqrt{3}-\sqrt{4}}-...+\dfrac{1}{\sqrt{2017}-\sqrt{2018}}\)
Chứng minh:
\(\sqrt{2017}+\sqrt{2018}< \dfrac{2017}{\sqrt{2018}}+\dfrac{2018}{\sqrt{2017}}\)
Bài 2: chứng minh rằng : \((\dfrac{14}{\sqrt{14}}+\dfrac{\sqrt{12}+\sqrt{30}}{\sqrt{2}+\sqrt{5}}).\sqrt{5-\sqrt{21}}=4\)
Bài 3 : Rút gọn biểu thức A= (\(\dfrac{\sqrt{x}+2}{x-1}-\dfrac{\sqrt{x}}{x-2\sqrt{x}+1}).\dfrac{2}{x-1}(vớix\ge0;x\ne1)\)
Bài 4: cho \(\Delta\)ABC vuông tại A có đường AH đường cao . Biết BH = 9cm , CH = 16cm . Tính AH ; AC ; số đo góc ABC ( số đo góc làm tròn đến độ )
Bài 5 :Cho biểu thức : A = \(\dfrac{\sqrt{2}}{\sqrt{x}-1}+\dfrac{1}{\sqrt{x}+3}+\dfrac{5-x}{(1-\sqrt{x})(\sqrt{x}+3)}(x>0;x\ne1)\)
a, rút gọn A
b, Gỉa sử A = \(\sqrt{2}\) chứng tỏ rằng : \(\sqrt{x}-\sqrt{2}\) là số nguyên
Bài 6 : Cho biểu thức A = \((\dfrac{1}{\sqrt{x}-2}-\dfrac{1}{\sqrt{x}+2}).\dfrac{x-4}{\sqrt{x}+3}\)với x\(\ge0;x\ne4\)
a, rút gọn A
b, tìm x để A > \(\dfrac{1}{2}\)
Bài 7 : cho biểu thức P = \((\dfrac{1}{\sqrt{x}-1}+\dfrac{1}{\sqrt{x}+1})(1-\dfrac{1}{\sqrt{x}})\)
a, rút gọn biểu thức P
b, tính giá trị biểu thức P khi x= \(\dfrac{1}{4}\)
c, Tìm tất cả các giá trị của x để P < 1
Bạn nào làm được thì giúp mình với ạ ! mk cám ơn !
a:\(\dfrac{b}{\left(a-4\right)^2}.\sqrt{\dfrac{\left(a-4\right)^4}{b^2}}\left(b>0;a\ne4\right)\)
b:\(\dfrac{x\sqrt{x}-y\sqrt{y}}{\sqrt{x}-\sqrt{y}}\left(x\ge0;y\ge0;x\ne0\right)\)
c:\(\dfrac{a}{\left(b-2\right)^2}.\sqrt{\dfrac{\left(b-2\right)^4}{a^2}\left(a>0;b\ne2\right)}\)
d:\(\dfrac{x}{\left(y-3\right)^2}.\sqrt{\dfrac{\left(y-3\right)^2}{x^2}\left(x>0;y\ne3\right)}\)
e:2x +\(\dfrac{\sqrt{1-6x+9x^2}}{3x-1}\)