theo bai ra, ta co:
\(\frac{a}{b}=\frac{132}{143}\Leftrightarrow\frac{a}{132}=\frac{b}{143}=k\)
\(\Rightarrow a=132k;b=143k\)
ta co: BCNN(a,b)=BCNN(132k;143k)=156k
\(\Rightarrow\)156k=1092\(\Leftrightarrow\)k=7
\(\Rightarrow\)a=132.k=924
theo bai ra, ta co:
\(\frac{a}{b}=\frac{132}{143}\Leftrightarrow\frac{a}{132}=\frac{b}{143}=k\)
\(\Rightarrow a=132k;b=143k\)
ta co: BCNN(a,b)=BCNN(132k;143k)=156k
\(\Rightarrow\)156k=1092\(\Leftrightarrow\)k=7
\(\Rightarrow\)a=132.k=924
với a b là các số tự nhiên khác 0 biết a/b=132/143. BCNN(a,b)= 1092. tính a
cho a,b,c la ba so doi mot khac nhau thoa man (a+b+c)2=a2+b2+c2
tinh gia tri cua bieu thuc P=a2/(a2+2bc)+b2/(b2+2ac)+c2/(c2+2ab)
neu a va b la 2 so nguyen duong thoa man a^2-b^2=97. khi do gti cua bthuc a^2+b^2 la b/n?
tim tat ca cac so tu nhien x y thoa man x^2=y^2(x+y^4+2y^2)
tim tat ca cac so tu nhien x,y thoa man x^2=y^2(x+y^4+2y^2)
Cho cac so a,b,c thoa man: a+b+c=\(\dfrac{3}{2}\)
CMR: \(a^2+b^2+c^2\ge\dfrac{3}{4}\)
Cho a,b\(\in R\) thoa man \(a^2+b^2=2\left(8+ab\right)\) va \(a< b\) Tinh P=\(a^2\left(a+1\right)-b^2\left(b-1\right)+ab-3ab\left(a-b+1\right)+64\)
cho a,b,c>0 thoa man dieu kien a+b+c=1
c/m ab/c+1+bc/a+1+ac/b+1<=1/4
Cho a,b,c thoa man \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=\dfrac{1}{a+b+c}\)
Tinh GT cua bieu thuc A=\(\left(a^3+b^3\right)\left(b^3+c^3\right)\left(c^3+a^3\right)\)