Cho a, b là các số thực dương thỏa mãn \(a+\frac{1}{b}\le1\). Tìm GTLN của biểu thức T=\(\frac{ab}{a^2+b^2}\)
1. Với các số thực dương a, b, c thay đổi thỏa mãn điều kiện a2+b2+c2+2abc=1, tìm GTLN của biểu thức P=ab+bc+ca-abc.
2. Cho các số thực dương a, b, c thỏa mãn các điều kiện (a+c)(b+c)=4c2. Tìm GTLN, GTNN của biểu thức P=\(\frac{a}{b+3c}+\frac{b}{a+3c}+\frac{ab}{bc+ca}\)
1) cho các số thực dương a,b thỏa mãn \(3a+b\le1\). Tìm Min của \(P=\dfrac{1}{a}+\dfrac{1}{\sqrt{ab}}\)
2) Với hai số thực a,b không âm thỏa mãn \(a^2+b^2=4\). Tìm Max \(M=\dfrac{ab}{a+b+2}\)
3) Cho x,y khác 0 thỏa mãn \(\left(x+y\right)xy=x^2+y^2-xy\). Tìm Max \(A=\dfrac{1}{x^3}+\dfrac{1}{y^3}\)
Cho 2 số thực dương a, b thỏa mãn \(a^3+b^3\le1\). Tìm GTLN: \(A=a+4b\)
Cho a,b,c là ba số thực dương thỏa mãn a+b+c=1.tìm GTLN của biểu thức P=\(\frac{ab}{c+1}+\frac{bc}{a+1}+\frac{ca}{b+1}\)
1 . Cho các số thực a, b, c dương thỏa mãn
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\le3\)
Tính giá trị lớn nhất của biể thức: \(P=\frac{1}{\sqrt{a^2-ab+3b^2+1}}+\frac{1}{\sqrt{b^2-bc+3c^2+1}}+\frac{1}{\sqrt{c^2-ac+3a^2+1}}\)
2 .
Cho các số thực dương a, b, c thỏa mãn: \(\frac{1}{a+1}+\frac{1}{b+1}+\frac{1}{c+1}\le1\)
Tìm giá trị nhỏ nhất của biểu thức: \(P=\frac{a^3}{a^2+ab+b^2}+\frac{b^3}{b^2+bc+c^2}+\frac{c^3}{c^2+ac+a^2}\)
Cho a, b, c là số thực dương thỏa mãn: a+b+c=1. Tìm GTLN của biểu thức: \(P=\sqrt{\dfrac{ab}{c+ab}}+\sqrt{\dfrac{bc}{a+bc}}+\sqrt{\dfrac{ac}{b+ac}}\)
1.Cho a,b là các số dương thay đổi thỏa mãn a+b=2
Tính GTNN biểu thức D=\(\frac{a+b}{ab}+\frac{ab}{a+b}\)
2. Cho 3 số dương x,y,z thỏa mãn x+y+z=1
Tìm GTLN của biểu thức B=\(\frac{x}{x+1}+\frac{y}{y+1}+\frac{z}{z+1}\)
3. Tính GTNN của biểu thức T=\(\sqrt{x^2-x+2}+\sqrt{x^2+x+2}\)
4. Tính GTLN A=\(\sqrt{x-1}+\sqrt{y-2}\) biết x+y=4
Cho các số thực dương a, b, c thỏa mãn các điều kiện (a+c)(b+c)=4c2. Tìm GTLN, GTNN của biểu thức P=
\(\frac{a}{b+3c}+\frac{b}{a+3c}+\frac{ab}{bc+ca}\)