\(P=\frac{ab}{c+1}+\frac{bc}{a+1}+\frac{ca}{b+1}=\frac{ab}{c+a+b+c}+\frac{bc}{a+b+c+a}+\frac{ca}{b+c+a+b}\)
Áp dụng BĐT Cô Si ta có :
\(P=\sum\frac{ab}{a+c+b+c}\le\sum\frac{1}{4}\left(\frac{ab}{a+c}+\frac{ab}{b+c}\right)=\frac{1}{4}\left(\frac{ab}{c+a}+\frac{bc}{c+a}+\frac{ab}{b+c}+\frac{ac}{b+c}+\frac{bc}{a+b}+\frac{ca}{a+b}\right)\)
\(=\frac{1}{4}\left[\frac{b\left(c+a\right)}{c+a}+\frac{a\left(b+c\right)}{b+c}+\frac{c\left(a+b\right)}{a+b}\right]=\frac{1}{4}\left(a+b+c\right)=\frac{1}{4}\)
Vậy GTLN của P là \(\frac{1}{4}\) khi \(a=b=c=\frac{1}{3}\)