Tham khảo:
https://diendantoanhoc.net/topic/110789-chứng-minh-nếu-p4-là-ước-của-a2b2-và-aab2-thì-p4-cũng-là-ước-của-aab/
Tham khảo:
https://diendantoanhoc.net/topic/110789-chứng-minh-nếu-p4-là-ước-của-a2b2-và-aab2-thì-p4-cũng-là-ước-của-aab/
Cho a,b,c là các số thực dương CMR : \(\dfrac{a}{\left(b+c\right)^2}+\dfrac{b}{\left(c+a\right)^2}+\dfrac{c}{\left(a+b\right)^2}\ge\dfrac{9}{4\left(a+b+c\right)}\)
Các bạn giải thích cho mình định lí này với (Nêu ví dụ cụ thể nha):
Nếu a là nghiệm nguyên của f(x) và f(1); f(- 1) khác 0 thì \(\dfrac{f\left(1\right)}{a-1};\dfrac{f\left(-1\right)}{a+1}\) đều là số nguyên. Để nhanh chóng loại trừ nghiệm là ước của hệ số tự do
Cho a,b,c là các số thực dương. CMR \(a^2+b^2+c^2+abc+4\ge2\left(ab+bc+ac\right)\)
tìm các số a,b nguyên thỏa mãn \(a^3+2=b^2\) và \(a^2+2\left(a+b\right)\) là số nguyên tố
cho a, b, c là các số thực dương. CMR: \(\dfrac{2a}{b+c}+\dfrac{2b}{c+a}+\dfrac{2c}{a+b}\ge3+\dfrac{\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2}{\left(a+b+c\right)^2}\)
Cho a, b là các số thực thoả mãn điều kiện:
\(\left(a+\sqrt{1+b^2}\right)\left(b+\sqrt{1+a^2}\right)=1\)
Tính giá trị của biểu thức: \(S=\left(a^3+b^3\right)\left(a^7b-5a^2b^4+21ab^5+73\right)+320\)
1.a,b,c là các số thực dương. CM \(\left(\dfrac{\sqrt{ab}}{\sqrt{a+b}}+\dfrac{\sqrt{bc}}{\sqrt{b+c}}\right)\left(\dfrac{1}{\sqrt{a+b}}+\dfrac{1}{\sqrt{b+c}}\right)\le2\)
2. x,y là các số nguyên sao cho \(x^2-2xy-y^2\) ;\(xy-2y^2-x\) đều chia hết cho 5Chứng minh \(2x^2+y^2+2x+y\) cũng chia hết cho 5
3. cho \(a_1a_2...a_{50}\) là các số nguyên thoả mãn \(1\le a_1\le a_2...\le a_{50}\le50;a_1+a_2+...+a_{50}=100\) chứng minh rằng từ các số đã cho có thể chọn đc một vài số có tổng là 50
Cho a,b,c,d,A,B,C,D là các số nguyên dương và \(\dfrac{a}{A}=\dfrac{b}{B}=\dfrac{c}{C}=\dfrac{d}{D}\)
CMR \(\sqrt{aA}+\sqrt{bB}+\sqrt{cC}+\sqrt{dD}=\sqrt{\left(a+b+c+d\right)\left(A+B+C+D\right)}\)
Giúp mình với các cao nhân