ta có \(\dfrac{1}{a}+\dfrac{1}{b}\ge\dfrac{4}{a+b}< =>\left(\dfrac{1}{a}+\dfrac{1}{b}\right)\left(a+b\right)\ge4\)
<=>\(1+\dfrac{a}{b}+\dfrac{b}{a}+1\ge4\)
Thật vậy:
áp dụng bdt Cô si
=>\(1+\dfrac{a}{b}+\dfrac{b}{a}+1=2+\dfrac{a}{b}+\dfrac{b}{a}\ge2\sqrt{\dfrac{a}{b}.\dfrac{b}{a}}+2=4\)
vậy bất đăng thức xảy ra
dấu "=" xảy ra \(\Leftrightarrow\)a=b