Cho a,b,c>0 Chứng minh rằng M=\(\dfrac{a}{a+b}+\dfrac{b}{b+c}+\dfrac{c}{c+a}\) không phải là số nguyên
Cho ba số dương 0<a<b<c<1 chứng minh rằng \(\dfrac{a}{bc+1}+\dfrac{b}{ac+1}+\dfrac{c}{ab+1}_-< 2\)
bài 4 Cho \(\dfrac{a}{a'}+\dfrac{b'}{b}=1\) và \(\dfrac{b}{b'}+\dfrac{c'}{c}=1\) chứng minh abc+a'b'c'=0
Cho các số thực a ; b ; c ; d ; e khác 0 thỏa mãn: \(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}=\dfrac{d}{e}\)
Chứng minh rằng: \(\dfrac{2a^4+3b^4+4c^4+5d^4}{2b^4+3c^4+4d^4+5e^4}=\dfrac{a}{e}\)
Cho a,b,c là số đo 3 cạnh tam giác:
Chứng minh rằng: \(1< \dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b}< 2\)
Bài 1 a) Cho \(\dfrac{a}{b}\)= \(\dfrac{b}{c}\)=\(\dfrac{c}{a}\) ;a+b+c khác 0;a=2003
Tìm b;c
b) Biết \(\dfrac{a+b}{a-b}\) = \(\dfrac{c+a}{c-a}\) với a khác b; a khác c
Chứng minh rằng a2 =b.c . Điểu ngược lại có đúng không???
Cho \(\dfrac{a}{b}=\dfrac{b}{c}\). Chứng minh rằng: \(\dfrac{a^2+c^2}{b^2+c^2}=\dfrac{a}{b}\)
Cho 3 số đôi một khác nhau. Chứng minh rằng : \(\dfrac{b-c}{\left(a-b\right)\left(a-c\right)}+\dfrac{c-a}{\left(b-c\right)\left(b-a\right)}+\dfrac{a-b}{\left(c-a\right)\left(c-b\right)}\) =\(2\left(\dfrac{1}{a-b}+\dfrac{1}{b-c}+\dfrac{1}{c-a}\right)\)
a) Cho 3 số a;b;c thỏa mãn \(\dfrac{a}{2015}=\dfrac{b}{2016}=\dfrac{c}{2017}\)
Tính giá trị của biểu thức B = 4(a-b)(b-c)-(c-a)2
b) Cho đa thức f(x) = a4x4+a3x3+a2x2+a1x+a0. Biết rằng f(1) =f(-1) và f(2)=f(-2). Chứng minh rằng f(x)=f(-x) với mọi x
c) Tìm các số nguyên dương x;y;z thỏa mãn \(\dfrac{x}{7}+\dfrac{y}{11}+\dfrac{z}{13}=\dfrac{946053}{999999}\)