\(M=1+\dfrac{1}{a^2}+\dfrac{2}{a}+1+\dfrac{1}{b^2}+\dfrac{2}{b}=2+2\left(\dfrac{1}{a}+\dfrac{1}{b}\right)+\left(\dfrac{1}{a^2}+\dfrac{1}{b^2}\right)\)
Theo BĐT Cauchy-Swarch ta có
\(2\left(\dfrac{1}{a}+\dfrac{1}{b}\right)\ge2.\dfrac{4}{a+b}=8\)
áp dụng BĐT AM-GM ta có
\(\dfrac{1}{a^2}+4\ge2\sqrt{\dfrac{1}{a^2}.4}=\dfrac{4}{a}\) ; \(\dfrac{1}{b^2}+4\ge2\sqrt{\dfrac{1}{b^2}.4}=\dfrac{4}{b}\)
Cộng hai vế BĐT trên lại ta được
\(\dfrac{1}{a^2}+\dfrac{1}{b^2}+8\ge\dfrac{4}{a}+\dfrac{4}{b}=4\left(\dfrac{1}{a}+\dfrac{1}{b}\right)\ge16\)
\(\Rightarrow\dfrac{1}{a^2}+\dfrac{1}{b^2}\ge16-8=8\)
\(\Rightarrow M\ge2+8+8=18\) vậy MinM=18 tại x=y=1/2