Chương 4: BẤT ĐẲNG THỨC, BẤT PHƯƠNG TRÌNH

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Lê Thiên Anh

Cho a,b >0 và a+b=1 .Tìm Min M=\(\left(1+\dfrac{1}{a}\right)^2+\left(1+\dfrac{1}{b}\right)^2\)

Hà Nam Phan Đình
6 tháng 11 2017 lúc 16:47

\(M=1+\dfrac{1}{a^2}+\dfrac{2}{a}+1+\dfrac{1}{b^2}+\dfrac{2}{b}=2+2\left(\dfrac{1}{a}+\dfrac{1}{b}\right)+\left(\dfrac{1}{a^2}+\dfrac{1}{b^2}\right)\)

Theo BĐT Cauchy-Swarch ta có

\(2\left(\dfrac{1}{a}+\dfrac{1}{b}\right)\ge2.\dfrac{4}{a+b}=8\)

áp dụng BĐT AM-GM ta có

\(\dfrac{1}{a^2}+4\ge2\sqrt{\dfrac{1}{a^2}.4}=\dfrac{4}{a}\) ; \(\dfrac{1}{b^2}+4\ge2\sqrt{\dfrac{1}{b^2}.4}=\dfrac{4}{b}\)

Cộng hai vế BĐT trên lại ta được

\(\dfrac{1}{a^2}+\dfrac{1}{b^2}+8\ge\dfrac{4}{a}+\dfrac{4}{b}=4\left(\dfrac{1}{a}+\dfrac{1}{b}\right)\ge16\)

\(\Rightarrow\dfrac{1}{a^2}+\dfrac{1}{b^2}\ge16-8=8\)

\(\Rightarrow M\ge2+8+8=18\) vậy MinM=18 tại x=y=1/2


Các câu hỏi tương tự
Kimian Hajan Ruventaren
Xem chi tiết
Tuấn Phạm Minh
Xem chi tiết
SA Na
Xem chi tiết
Kimian Hajan Ruventaren
Xem chi tiết
Hoàng
Xem chi tiết
Nguyễn Trần
Xem chi tiết
Vũ Như Quỳnh
Xem chi tiết
Thiên Yết
Xem chi tiết
Ngô Thành Chung
Xem chi tiết