cho \(a^3-3a^2+5a-17=0\) và \(b^3-3b^2+5b+11=0\) chứng minh a+b=2
Cho \(a^3-a^2+5a-17=0\)
\(b^3-3b^2+5b+11=0 \)
Tính a+b
Giúp mình nha
Cho 3 số a,b,c >0 tm: a+b+c=1 Tìm Max
P=\(\frac{a}{9a^3+3b^2+c}+\frac{b}{9b^3+3c^2+a}+ \frac{c}{9c^3+3a^2+b}\)
Cho a, b, c khác 0 và \(a^3b^3+b^3c^3+c^3a^3=3a^2b^2c^2\)
Tính \(A=\left(1+\dfrac{a}{b}\right)\left(1+\dfrac{b}{c}\right)\left(1+\dfrac{c}{a}\right)\)
Cho \(a,b,c>0\). CMR:
\(\sqrt{\dfrac{a^3}{5a^2+\left(b+c\right)^2}}+\sqrt{\dfrac{b^3}{5b^2+\left(c+a\right)^2}}+\sqrt{\dfrac{c^3}{5c^2+\left(a+b\right)^2}}\le\sqrt{\dfrac{a+b+c}{3}}\)
Cho a,b,c > 0 có a+b+c = 3 Tìm gtln của
\(Q=\dfrac{ab}{\sqrt{3a^2+b^2}+1}+\dfrac{bc}{\sqrt{3b^2+c^2}+1}+\dfrac{ca}{\sqrt{3c^2+a^2}+1}\)
Cho P=\(\dfrac{\left(\dfrac{a-b}{\sqrt{a}+\sqrt{b}}\right)^3+2a\sqrt{a}+b\sqrt{b}}{3a^2+3b\sqrt{ab}}+\dfrac{\sqrt{ab}-a}{a\sqrt{a}-b\sqrt{a}}\)với a>0, b>0 và \(a\ne b\)
Chứng mình rằng P không phụ thuộc vào giá trị của a và b
\(Choa^3+b^3+c^3=3abc\)
\(a+b+c\ne0\)
Tính \(C=\left(1+\dfrac{a}{b}\right)\left(1+\dfrac{b}{c}\right)\left(1+\dfrac{c}{a}\right)\)
bài 2: Cho a,b,ckhác 0
\(a^3b^3+b^3c^3+c^3a^3=3a^2b^2c^2\)
Tính \(D=\left(1+\dfrac{a}{b}\right)\left(1+\dfrac{b}{c}\right)\left(1+\dfrac{c}{a}\right)\)
Cho a,b ≥ 0 thỏa mãn a2+b2 ≤ 2
Chứng minh rằng
\(a\sqrt{3a\left(a+2b\right)}+b\sqrt{3b\left(b+2a\right)}\le6\)