c = ha + kb
<=> (5;0) = h(2;-2) + k(1;4)
<=> \(\left\{{}\begin{matrix}5=2h+k\\0=-2h+4k\end{matrix}\right.\)
<=> \(\left\{{}\begin{matrix}h=2\\k=1\end{matrix}\right.\)
c = ha + kb
<=> (5;0) = h(2;-2) + k(1;4)
<=> \(\left\{{}\begin{matrix}5=2h+k\\0=-2h+4k\end{matrix}\right.\)
<=> \(\left\{{}\begin{matrix}h=2\\k=1\end{matrix}\right.\)
Cho hình bình hành ABCD, J là trung điểm BC, K thỏa 2 vectơ KB = - vectơ AK
a) Phân tích vec tơ DJ, vectơ DK theo hai vec tơ AB,BD
b) chứng jinh: D,K,J thẳng hàng
c) G là trọng tâm tam giác ABC.Phân tích vectơ AG theo vectơ AB,AD
Cho \(\Delta\)ABC. Hãy xác định các điểm I, J, K , L thỏa các đẳng thức sau:
a/ \(2\overrightarrow{IA}-3\overrightarrow{IB}=3\overrightarrow{BC}\)
b/ \(\overrightarrow{JA}+\overrightarrow{JB}+2\overrightarrow{JC}=\overrightarrow{0}\)
c/ \(\overrightarrow{KA}+\overrightarrow{KB}-\overrightarrow{KC}=\overrightarrow{BC}\)
d/ \(\overrightarrow{LA}-2\overrightarrow{LC}=\overrightarrow{AB}-2\overrightarrow{AC}\)
a) Cho tam giác ABC. Gọi D, E lần lượt là các điểm thỏa mãn: \(\overrightarrow{BD}=\dfrac{2}{3}\overrightarrow{BC};\overrightarrow{AE}=\dfrac{1}{4}\overrightarrow{AC}.\)Tìm vị trí của điểm K trên AD sao cho 3 điểm B, K, E thằng hàng.
b) Cho tam giác ABC vuông tại A; BC = a; CA = b; AB = c. Xác định điểm I thỏa mãn hệ thức: \(\left(b^2MB^2+c^2MC^2-2a^2MA^2\right)\) đạt giá trị lớn nhất.
Cho A( 2;-3) B( 1;4). Tìm M thuộc Ox sao cho A,B, M thẳng hàng
Cho tam giác ABC bất kì, gọi M,N,P lần lượt là trung điểm các cạnh AB,BC,CA. H,H' lần lượt là trực tâm các tam giác ABC,MNP; K đối xứng với H qua H'. Khẳng định nào đúng?
A. \(\overrightarrow{HA}+\overrightarrow{HB}+\overrightarrow{HC}=\overrightarrow{HH'}\)
B.\(\overrightarrow{HA}+\overrightarrow{HB}+\overrightarrow{HC}=\overrightarrow{HK}\)
C.\(\overrightarrow{HA}+\overrightarrow{HB}+\overrightarrow{HC}=\overrightarrow{0}\)
(Kèm lời giải)
1. Cho hbh ABCD. Đặt vecto AB=a, AD=b. Gọi I là trung điểm của CD, G là trọng tâm của tam giác BCI. Phân tích các vecto BI, CG theo vecto a,b
2. Cho tam giác ABC có trọng tâm G. Gọi D là điểm đối xứng của A qua B và E là điểm trên đoạn AC sao cho AE =2/5 AC
a) phân tích vecto DE, DG theo vecto AB và AC
b) cmr D,G,E thẳng hàng
c) xét K là điểm thỏa vecto KA + KB + 3KC = 2KD. CMR KG//CD
Cho A(-1;4) , B(1;-2) , C(3;4)
2, Chứng minh 3 điểm A,B,C không thẳng hàng
3, Tìm tọa độ M là trung điểm của AB
4, Tìm tọa độ G là trọng tâm tam giác ABC
5, Tìm D đối xứng A qua G
Cho t/g ABC gọi I , J , K là các điểm thỏa mãn đk : \(\overrightarrow{IB}=3\overrightarrow{IC},\overrightarrow{JA}=-2\overrightarrow{JC},\overrightarrow{KB}+3\overrightarrow{KA}=\overrightarrow{0}\)
a, Phân tích vecto JK theo hai vecto AB và AC
b. Phân tích vecto BC theo AI và JK
cho tam giác ABC bất kì , gọi M,N,P lần lượt là trung điểm các cạnh AB,BC,CA . H,H' lần lượt là trực tâm của tam giác ABC,MNP. K đối xứng với H qua H' .Khẳng định nào sau đây đúng?
A.\(\overrightarrow{HA}+\overrightarrow{HB}+\overrightarrow{HC}=\overrightarrow{HH'}\)
B.\(\overrightarrow{HA}+\overrightarrow{HB}+\overrightarrow{HC}=\overrightarrow{HK}\)
C.\(\overrightarrow{HA}+\overrightarrow{HB}+\overrightarrow{HC}=\overrightarrow{0}\)
D.\(\overrightarrow{HM}+\overrightarrow{HN}+\overrightarrow{HP}=\overrightarrow{H'K}\)