Ôn tập cuối năm môn Đại số

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Phạm Lợi

cho a>0,b>0,c>0. chứng minh : \(a^2\left(1+c^2\right)+c^2\left(1+b^2\right)+b^2\left(1+a^2\right)\ge6abc\)

Y
16 tháng 4 2019 lúc 21:41

+ \(c^2+1\ge2c\) \(\forall c\)

\(\Rightarrow a^2\left(c^2+1\right)\ge2a^2c\)

Dấu "=" xảy ra \(\Leftrightarrow c=1\)

+ Tương tự ta có :

\(c^2\left(b^2+1\right)\ge2bc^2\). Dấu "=" xảy ra \(\Leftrightarrow b=1\)

\(b^2\left(a^2+1\right)\ge2ab^2\). Dấu "=" xảy ra \(\Leftrightarrow a=1\)

do đó : \(a^2\left(c^2+1\right)+c^2\left(b^2+1\right)+b^2\left(a^2+1\right)\)

\(\ge2\left(a^2c+bc^2+ab^2\right)\)

Dấu "=" xảy ra \(\Leftrightarrow a=b=c=1\)

Áp dụng bđt AM-GM cho 3 số dương \(a^2c;bc^2;ab^2\) ta có :

\(a^2c+bc^2+ab^2\ge3\sqrt[3]{a^2c\cdot bc^2\cdot ab^2}=3abc\)

Dấu "=" xảy ra \(\Leftrightarrow a^2c=bc^2=ab^2\Leftrightarrow a=b=c\)

Do đó : \(a^2\left(c^2+1\right)+c^2\left(c^2+1\right)+b^2\left(a^2+1\right)\)

\(\ge2\cdot3abc=6abc\)

Dấu "=" xảy ra \(\Leftrightarrow a=b=c=1\)

Muốn Một Cái Tên Dài Như...
16 tháng 4 2019 lúc 21:46

Nghĩ đơn giản ra

VT = a2 + c2a2 + c2 + b2c2 + b2 + a2b2\(6\sqrt[6]{a^6b^6c^6}\) = 6abc


Các câu hỏi tương tự
btkho
Xem chi tiết
Tường Nguyễn Thế
Xem chi tiết
Melanie Granger
Xem chi tiết
Kinder
Xem chi tiết
btkho
Xem chi tiết
Bé Poro Kawaii
Xem chi tiết
Tường Nguyễn Thế
Xem chi tiết
DuaHaupro1
Xem chi tiết
DuaHaupro1
Xem chi tiết