Ta có: \(9a^2-b^2=0\Rightarrow\left(3a-b\right)\left(3a+b\right)=0\Rightarrow\left\{{}\begin{matrix}3a-b=0\\3a+b=0\end{matrix}\right.\)
\(9a^3-\dfrac{1}{3}b^3=\dfrac{1}{3}\left(27a^3-b^3\right)=\dfrac{1}{3}\left(3a-b\right)\left(9a^2+3ab+b^2\right)=\dfrac{1}{3}.0.\left(9a^2+3ab+b^2\right)=0\)
