\(a=\sqrt{4+2\sqrt{3}}-\sqrt{4-2\sqrt{3}}\)
\(a^2=4+2\sqrt{3}-2\sqrt{\left(4+2\sqrt{3}\right)\left(4-2\sqrt{3}\right)}+4-2\sqrt{3}\)
\(a^2=8-2\sqrt{16-12}\)
\(a^2=8-4\)
\(a^2=4\)
Thay vào P ta được :
\(P=\left(a^3-4a+1\right)^{2011}\)
\(P=\left[a\left(a^2-4\right)+1\right]^{2011}\)
\(P=\left[a\left(4-4\right)+1\right]^{2011}\)
\(P=\left(0+1\right)^{2011}\)
\(P=1^{2011}=1\)
Vậy...
a= \(\sqrt{\left(\sqrt{3}+1\right)}^2\)-\(\sqrt{\left(\sqrt{3}-1\right)}^2\)
= \(\left(\sqrt{3}+1\right)\)-\(\left(\sqrt{3}-1\right)\)
= 2
Có P =\(\left(2^3-4.2+1\right)^{2011}\)
= 1