cho
A=\(\dfrac{1}{1\left(2n-1\right)}+\dfrac{1}{3\left(2n-3\right)}+...+\dfrac{1}{\left(2n-3\right)3}+\dfrac{1}{\left(2n-1\right)1}\)
B=\(1+\dfrac{1}{3}+...+\dfrac{1}{2n-1}\)
tính \(\dfrac{A}{B}\)
Tính:
a, \(\dfrac{3}{\left(1.2\right)^2}+\dfrac{5}{\left(2.3\right)^2}+...+\dfrac{2n+1}{n^2\left(n+1\right)^1}\) tại n= 2014
b, \(\dfrac{1}{2!}+\dfrac{2}{3!}+\dfrac{3}{4!}+...+\dfrac{12}{13!}\)
1, rút gọn
\(A=\dfrac{3}{\left(1.2\right)^2}+\dfrac{5}{\left(2.3\right)^2}+....+\dfrac{2n+1}{\left[n\left(n+1\right)\right]^2}\)
rút gọn phân thức:\(A=\dfrac{3}{\left(1.2\right)^2}+\dfrac{5}{\left(2.3\right)^2}+\dfrac{7}{\left(3.4\right)^2}+...+\dfrac{2n+1}{\left[n\left(n+1\right)\right]^2}\)
tính tổng \(S=\dfrac{1}{1.3}+\dfrac{1}{3.5}+\dfrac{1}{5.7}+...+\dfrac{1}{\left(2n-1\right)\left(2n+1\right)}\)
1) \(\left(\dfrac{-3}{4}\right)^{3x+1}=\dfrac{81}{256}\) 6) \(\left(8x-1\right)^{2n-4}=5^{2n-4}\)
2) \(172.x^2-\dfrac{7^9}{98^3}=\dfrac{1}{2^3}\) 7) \(\left(\dfrac{1}{2x}-5\right)^{20}+\left(y^2-\dfrac{1}{4}\right)^{10}=0\)
3) \(\left(x-\dfrac{2}{9}\right)^3=\left(\dfrac{2}{3}\right)^6\)
4) \(\left(x+2\right)^2+\left(y-\dfrac{1}{10}\right)^2=0\)
5) \(\left(x-7\right)^{n+1}-\left(x-7\right)^{n+11}=0\)
Giúp mk với!!!!!
CMR
\(\dfrac{1}{4+1^4}+\dfrac{3}{4+3^4}+....\dfrac{2n-1}{4+\left(2n-1\right)^4}=\dfrac{n^2}{4n^2+1}\)
với mọi n nguyên dương
Làm tính nhân: a. \(\left(3x^{2m-1}-\dfrac{3}{7}y^{3n-5}+x^{2m}y^{3m}-3y^2\right)8x^{3-2m}y^{6-3n}\)
b.\(\left(2x^{2n}+3x^{2n-1}\right)\left(x^{1-2n}-3x^{2-2n}\right)\)
\(\dfrac{1}{2.4}+\dfrac{1}{4.6}+\dfrac{1}{6.8}+...+\dfrac{1}{2n\left(2n+2\right)}=\dfrac{1009}{4038}\) Tìm n?