\(S\ge0\), đẳng thức xảy ra khi a = b = 0.
Bài này chắc có vấn đề, đáng lẽ phải là tìm GTLN
\(S\ge0\), đẳng thức xảy ra khi a = b = 0.
Bài này chắc có vấn đề, đáng lẽ phải là tìm GTLN
Cho a, b không âm thỏa mãn: \(a^2+b^2=a+b\). Tìm GTNN của biểu thức: \(S=\dfrac{a}{a+1}+\dfrac{b}{b+1}\)
Cho a, b không âm thỏa mãn: \(a^2+b^2=a+b\). Tìm GTLN của biểu thức: \(S=\dfrac{a}{a+1}+\dfrac{b}{b+1}\)
Cho các số thực dương a, b, c thỏa mãn \(a^2+b^2+c^2+abc=4\). Tìm GTNN của biểu thức \(P=\dfrac{ab}{a+2b}+\dfrac{bc}{b+2c}+\dfrac{ca}{c+2a}\)
cho x,y,z>0 thỏa mãn \(\dfrac{1}{x}+\dfrac{2}{y}+\dfrac{3}{z}=6\) và biểu thức \(P=x+y^2+z^3\).
a/. CM: \(P\ge x+2y+3z-3\)
b/. tìm GTNN của P
Cho 2 số thực a, b thỏa mãn ab ≠ 0, a ≠ 1, b ≠ 1 và a + b = 1. Tính giá trị của biểu thức
\(P=\dfrac{a}{b^3-1}-\dfrac{b}{a^3-1}+\dfrac{2\left(a-b\right)}{a^2b^2+3}\)
Cho 2 số thực a, b thỏa mãn ab ≠ 0, a ≠ 1, b ≠ 1 và a + b = 1. Tính giá trị của biểu thức
\(P=\dfrac{a}{b^3-1}-\dfrac{b}{a^3-1}+\dfrac{2\left(a-b\right)}{a^2b^2+3}\)
Cho a,b,c là các số dương thỏa mãn a+b+c+ab+bc+ca=6abc.Tìm GTNN của biểu thức P= \(\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}\)
Cho a+b+c=3 và a, b, c>0. Tìm GTNN của biểu thức: \(P=\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\)
Áp dụng BĐT: \(\dfrac{1}{a}+\dfrac{1}{b}\ge\dfrac{4}{a+b}\) ( với a, b dương), tìm GTNN của biểu thức: \(M=\dfrac{2}{xy}+\dfrac{3}{x^2+y^2}\) với x, y là 2 số dương và x+y=1