Cho a, b, c thuộc Z thỏa mãn: (a-b)^3+(b-c)^3+(c-a)^3=-3. Tính giá trị của biểu thức A=(a-b).(b-c).(c-a)
Cho a, b, c thuộc Z thỏa mãn: (a-b)^3+(b-c)^3+(c-a)^3=-3. Tính giá trị của biểu thức A=(a-b).(b-c).(c-a)
cho a,b,c khác 0 thỏa mãn \(\dfrac{a+b-c}{c}=\dfrac{b+c-a}{a}=\dfrac{c+a-b}{b}\). Tính giá trị biểu thức \(P=\dfrac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{abc}\)
Cho các số thực a,b,c thỏa mãn \(a^2+b^2+c^2=3\) và \(a+b+c+ab+bc+ca=6\)
Tính giá trị biểu thức : A=\(\dfrac{a^{30}+b^4+c^{1975}}{a^{30}+b^4+c^{2019}}\)
Cho 3 số a, b, c khác 0 thỏa mãn: ab+bc+ca=0. Hãy tính giá trị biểu thức \(N=\dfrac{bc}{a^2}+\dfrac{ac}{b^2}+\dfrac{ab}{c^2}\)
Cho các số thực dương a,b thỏa mãn: \(a^{2012}+b^{2012}=a^{2013}+b^{2013}=a^{2014}+b^{2014}\)
Hãy tính giá trị của biểu thức: \(P=\left(a+b-1\right)^{2013}+b^{2014}\)
Cho 3 số dương a, b, c thỏa mãn a + b + c = 6. Tính GTLN của biểu thức
\(P=\dfrac{ab}{6-c}+\dfrac{bc}{6-a}+\dfrac{ca}{6-b}\)
Cho 2 số thực a, b thỏa mãn ab ≠ 0, a ≠ 1, b ≠ 1 và a + b = 1. Tính giá trị của biểu thức
\(P=\dfrac{a}{b^3-1}-\dfrac{b}{a^3-1}+\dfrac{2\left(a-b\right)}{a^2b^2+3}\)
Cho 2 số thực a, b thỏa mãn ab ≠ 0, a ≠ 1, b ≠ 1 và a + b = 1. Tính giá trị của biểu thức
\(P=\dfrac{a}{b^3-1}-\dfrac{b}{a^3-1}+\dfrac{2\left(a-b\right)}{a^2b^2+3}\)