\(a^4+b^4+c^4\ge0\Rightarrow\) Không tồn tại a, b, c thỏa mãn \(a^4+b^4+c^4=-1\)
\(a^4+b^4+c^4\ge0\Rightarrow\) Không tồn tại a, b, c thỏa mãn \(a^4+b^4+c^4=-1\)
Cho \(a,b,c>0\) thỏa mãn \(a^4+b^4+c^4=3\). Chứng minh:
\(\dfrac{a^2}{b^3+1}+\dfrac{b^2}{c^3+1}+\dfrac{c^2}{a^3+1}\ge\dfrac{3}{2}\)
\(\text{Cho a, b, c}\ge0\text{ thỏa mãn }:\text{ }a+b+c=1\)
\(CMR:\text{ }a^4+b^4+c^4\ge\frac{1}{27}\)
Cho các số dương a, b, c thỏa mãn: a+b+c=1. CMR: \(4.\left(\dfrac{1}{a+b}+\dfrac{1}{b+c}+\dfrac{1}{c+a}\right)\le\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}+9\)
Cho a,b,c >0 thỏa mãn \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=4\). Tìm GTLN của biểu thức
\(M=\dfrac{1}{2a+b+c}+\dfrac{1}{a+2b+c}+\dfrac{1}{a+b+2c}\)
Cho a, b, c là các số dương thỏa mãn: \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=1\). CMR: \(\dfrac{a^2}{a+bc}+\dfrac{b^2}{b+ca}+\dfrac{c^2}{c+ba}\le\dfrac{a+b+c}{4}\)
Cho a, b, c, d là các số tùy ý thỏa mãn a+b+c+d=1. Chứng minh
a2+b2+c2+d2-2ab-2bc-2cd-2da≥- 1/4
1.Xét 2 số thực không âm a,b thỏa mãn a+b≤6. Tìm giá trị lớn nhất của A=a2b(4-a-b)
2. Cho các số a,b,c∈R+ thỏa mãn a+b+c=3.CMR : a+ab+2abc≤\(\dfrac{9}{2}\)
3. Cho các số a,b ∈R+ phân biệt. CMR: (x+y)\(\left(\dfrac{1}{x}+\dfrac{1}{y}\right)\)+\(\dfrac{16}{\left(x-y\right)^2}\)≥12
Cho a, b, c > 0 thỏa mãn a + \(\sqrt{ab}+\sqrt[3]{abc}=\dfrac{4}{3}\)
Tìm GTNN của A = a + b + c
cho a,b,c >0 thỏa mãn \(a^2+b^2+c^2=3\) chứng minh rằng \(\dfrac{a}{ab+3}+\dfrac{b}{bc+3}+\dfrac{c}{ca+3}\le\dfrac{3}{4}\)