Cách giải bằng uvw (chả biết có đúng ko nhưng chắc là đúng):Câu hỏi của tth
À tình cờ hôm trước em có tham khảo một lời giải bằng MV khá hay nè:)) (đọc cũng khá lâu r nên ko chắc là nhớ hết!)
Không mất tính tổng quát, giả sử \(a\ge b\ge c\)
Đặt \(f\left(a;b;c\right)=\frac{1}{\left(a+b\right)^2}+\frac{1}{\left(b+c\right)^2}+\frac{1}{\left(c+a\right)^2}-\frac{9}{4\left(ab+bc+ca\right)}\)
Ta sẽ chứng minh \(f\left(a;b;c\right)\ge f\left(t;t;c\right)\) (*) với \(t=\frac{a+b}{2}\)
\(\Leftrightarrow\frac{1}{\left(b+c\right)^2}+\frac{1}{\left(c+a\right)^2}-\frac{9}{4\left(ab+bc+ca\right)}\ge\frac{2}{\left(t+c\right)^2}-\frac{9}{4\left(t^2+2tc\right)}\)
\(\Leftrightarrow\frac{1}{\left(b+c\right)^2}+\frac{1}{\left(c+a\right)^2}-\frac{2}{\left(b+c\right)\left(c+a\right)}+\frac{2}{\left(b+c\right)\left(c+a\right)}-\frac{2}{\left(t+c\right)^2}\ge\frac{9}{4}\left(\frac{1}{ab+bc+ca}-\frac{1}{t^2+2tc}\right)\)
\(\Leftrightarrow\frac{\left(a-b\right)^2}{\left[\left(b+c\right)\left(c+a\right)\right]^2}+\frac{\frac{1}{2}\left(a-b\right)^2}{\left(t+c\right)^2\left(b+c\right)\left(c+a\right)}\ge\frac{9\left(a-b\right)^2}{16\left(ab+bc+ca\right)\left(t^2+2tc\right)}\)
\(\Leftrightarrow\frac{2\left(a-b\right)^2}{\left[\left(b+c\right)\left(c+a\right)\right]^2}+\frac{\left(a-b\right)^2}{\left(t+c\right)^2\left(b+c\right)\left(c+a\right)}\ge\frac{9\left(a-b\right)^2}{8\left(ab+bc+ca\right)\left(t^2+2tc\right)}\)
Từ đây bằng cách chuyển vế và đặt nhân tử chung ta dễ dàng nhận thấy (*) sẽ được chứng minh nếu ta chỉ ra được:
\(\frac{2}{\left[\left(b+c\right)\left(c+a\right)\right]^2}+\frac{1}{\left(t+c\right)^2\left(b+c\right)\left(c+a\right)}>\frac{9}{8\left(ab+bc+ca\right)\left(t^2+2tc\right)}\)(1)
Để ý rằng \(t^2+2tc\ge ab+bc+ca\) (dễ dàng nhận thấy)
\(4\left(ab+bc+ca\right)-3\left(a+c\right)\left(b+c\right)=ab+bc+ca-3c^2\ge0\)
Do đó \(VP_{\left(1\right)}\le\frac{9}{8\left(ab+bc+ca\right)^2}=\frac{18}{\left[4\left(ab+bc+ca\right)\right]^2}\le\frac{2}{\left(a+c\right)^2\left(b+c\right)^2}\)
\(< \frac{2}{\left[\left(b+c\right)\left(c+a\right)\right]^2}+\frac{1}{\left(t+c\right)^2\left(b+c\right)\left(c+a\right)}=VT\)
Vậy (1) đã được chứng minh do đó (*) đã được chứng minh,
Phép dồn biến hoàn tất. Ta có: \(f\left(a;b;c\right)\ge f\left(t;t;c\right)=\frac{1}{4t^2}+\frac{2}{\left(t+c\right)^2}-\frac{9}{4\left(t^2+2tc\right)}\)
\(=\frac{\left(t+c\right)^2\left(t^2+2tc\right)+8t^2\left(t^2+2tc\right)-9t^2\left(t+c\right)^2}{4t^2\left(t+c\right)^2\left(t^2+2tc\right)}\)
\(=\frac{c\left(t-c\right)^2}{2t\left(t+c\right)^2\left(t^2+2tc\right)}\ge0\)
Từ đó ta thu được đpcm.
P/s: Is that true?
Cách của em khá là "trâu", mong mọi người tìm thêm những lời giải sơ cấp hơn ạ!
Nguyễn Huy ThắngAkai HarumaNguyễn Việt LâmVũ Minh TuấnHISINOMA KINIMADO