§1. Bất đẳng thức

Eren

Cho a, b, c là các số thực dương thỏa mãn \(\dfrac{1}{a+b+1}+\dfrac{1}{b+c+1}+\dfrac{1}{c+a+1}\ge1\). Cmr a + b + c \(\ge\) ab + bc + ca

Akai Haruma
29 tháng 9 2017 lúc 0:04

Lời giải:

Áp dụng BĐT Cauchy-Schwarz:

\((a+b+1)(a+b+c^2)\geq (a+b+c)^2\Rightarrow a+b+1\geq \frac{(a+b+c)^2}{a+b+c^2}\)

\(\Rightarrow \frac{1}{a+b+1}\leq \frac{a+b+c^2}{(a+b+c)^2}\)

Tương tự cho các phân thức còn lại, suy ra:

\(1\leq \frac{1}{a+b+1}+\frac{1}{b+c+1}+\frac{1}{a+c+1}\leq \frac{a+b+c^2}{(a+b+c)^2}+\frac{b+c+a^2}{(a+b+c)^2}+\frac{c+a+b^2}{(a+b+c)^2}\)

\(\Leftrightarrow 1\leq \frac{2(a+b+c)+a^2+b^2+c^2}{(a+b+c)^2}\)

\(\Leftrightarrow (a+b+c)^2\leq 2(a+b+c)+a^2+b^2+c^2\)

\(\Leftrightarrow ab+bc+ac\leq a+b+c\) (đpcm)

Dấu bằng xảy ra khi $a=b=c=1$

Bình luận (0)

Các câu hỏi tương tự
Nguyễn Quốc Việt
Xem chi tiết
Phạm Kim Oanh
Xem chi tiết
Đỗ Thị Hằng
Xem chi tiết
Phạm Kim Oanh
Xem chi tiết
phạm thảo
Xem chi tiết
phạm thảo
Xem chi tiết
Nguyễn Quốc Việt
Xem chi tiết
Phạm Kim Oanh
Xem chi tiết
Neet
Xem chi tiết