Violympic toán 9

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Nguyễn Thanh Hiền

Cho a, b, c là các số không âm thỏa mãn a + b + c = 1006. Chứng minh rằng:

\(\sqrt{2012a+\frac{\left(b-c\right)^2}{2}}+\sqrt{2012b+\frac{\left(c-a\right)^2}{2}}+\sqrt{2012c+\frac{\left(a-b\right)^2}{2}}\le2012\sqrt{2}\)

Nguyễn Việt Lâm
17 tháng 5 2020 lúc 20:38

\(\sqrt{2012a+\frac{\left(b-c\right)^2}{2}}=\sqrt{2a\left(a+b+c\right)+\frac{\left(b-c\right)^2}{2}}\)

\(=\sqrt{\frac{4a^2+4ab+4ac+b^2+c^2-2bc}{2}}=\sqrt{\frac{\left(2a+b+c\right)^2-4bc}{2}}\le\sqrt{\frac{\left(2a+b+c\right)^2}{2}}=\frac{1}{\sqrt{2}}\left(2a+b+c\right)\)

Tương tự:

\(\sqrt{2012b+\frac{\left(c-a\right)^2}{2}}\le\frac{1}{\sqrt{2}}\left(a+2b+c\right)\) ; \(\sqrt{2012c+\frac{\left(a-b\right)^2}{2}}\le\frac{1}{\sqrt{2}}\left(a+b+2c\right)\)

Cộng vế với vế:

\(VT\le\frac{1}{\sqrt{2}}\left(4a+4b+4c\right)=2\sqrt{2}\left(a+b+c\right)=2012\sqrt{2}\)

Dấu "=" xảy ra khi \(\left(a;b;c\right)=\left(1006;0;0\right)\) và hoán vị


Các câu hỏi tương tự
nam do
Xem chi tiết
Lê Anh Ngọc
Xem chi tiết
Khánh Ngọc
Xem chi tiết
Võ Hồng Phúc
Xem chi tiết
Agami Raito
Xem chi tiết
Vương Thiên Nhi
Xem chi tiết
Doãn Hoài Trang
Xem chi tiết
Nguyễn Đức Anh
Xem chi tiết
Uchiha Itachi
Xem chi tiết