Áp dụng bất đẳng thức Cauchy cho 2 bộ số thực không âm
\(\Rightarrow\left\{{}\begin{matrix}a+b\ge2\sqrt{ab}\\c+d\ge2\sqrt{cd}\end{matrix}\right.\)
\(\Rightarrow a+b+c+d\ge2\left(\sqrt{ab}+\sqrt{cd}\right)\)
\(\Rightarrow\dfrac{a+b+c+d}{4}\ge\dfrac{\sqrt{ab}+\sqrt{cd}}{2}\) (1)
Áp dụng bất đẳng thức Cauchy cho 2 bộ số thực không âm
\(\Rightarrow\sqrt{ab}+\sqrt{cd}\ge2\sqrt{\sqrt{abcd}}=2\sqrt[4]{abcd}\)
\(\Rightarrow\dfrac{\sqrt{ab}+\sqrt{cd}}{2}\ge\dfrac{2\sqrt[4]{abcd}}{2}=\sqrt[4]{abcd}\) (2)
Từ (1) và (2)
\(\Rightarrow\dfrac{a+b+c+d}{4}\ge\dfrac{\sqrt{ab}+\sqrt{cd}}{2}\ge\sqrt[4]{abcd}\)
\(\Rightarrow\dfrac{a+b+c+d}{4}\ge\sqrt[4]{abcd}\) ( đpcm )
Dấu " = " xảy ra khi \(a=b=c=d\)