Áp dụng bất đẳng thức Cauchy - Schwarz dạng phân thức
\(\Rightarrow\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}+\dfrac{1}{d}\ge\dfrac{\left(1+1+1+1\right)^2}{a+b+c+d}=\dfrac{16}{a+b+c+d}\) ( đpcm )
Dấu " = " xảy ra khi \(a=b=c\)
Áp dụng bất đẳng thức Cauchy - Schwarz dạng phân thức
\(\Rightarrow\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}+\dfrac{1}{d}\ge\dfrac{\left(1+1+1+1\right)^2}{a+b+c+d}=\dfrac{16}{a+b+c+d}\) ( đpcm )
Dấu " = " xảy ra khi \(a=b=c\)
Cho a, b, c, d là những số dương.
Chứng minh rằng :
\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\ge\dfrac{9}{a+b+c}\)
Cho a, b, c, d là những số dương.
Chứng minh rằng :
\(\dfrac{1}{a}+\dfrac{1}{b}\ge\dfrac{4}{a+b}\)
Cho các số thực dương \(a;b;c;d\) thỏa mãn :\(a+b+c+d=4\). Chứng minh rằng :
\(\dfrac{1}{a^2+b+c+d}+\dfrac{1}{b^2+c+d+a}+\dfrac{1}{c^2+d+a+b}+\dfrac{1}{d^2+a+b+c}\le1\)
P/s: Em nhờ quý thầy cô giáo và các bạn hỗ trợ giúp đỡ với ạ!
Em cám ơn nhiều lắm ạ!
Cho các số thực dương \(a;b;c;d\) thỏa mãn điều kiện \(a+b+c+d=4\). Chứng minh rằng
\(\dfrac{1}{a^2+b+c+d}+\dfrac{1}{b^2+c+d+a}+\dfrac{1}{c^2+d+a+b}+\dfrac{1}{d^2+a+b+c}\le1\)
P/s: Em xin phép quý thầy cô giáo và các bạn yêu toán, em nhờ mọi người vui lòng giúp đỡ em với ạ!
Em cám ơn nhiều lắm ạ!
Cho \(a;b;c\) là các số thực dương thỏa mãn :\(0< a;b;c< 1\). Chứng minh rằng:
\(\dfrac{1}{a.\left(1-b\right)}+\dfrac{1}{b.\left(1-c\right)}+\dfrac{1}{c.\left(1-a\right)}\ge\dfrac{3}{1-\left(a+b+c\right)+ab+bc+ac}\)
P/s: Đề cương toán lớp 10 trường THPT chuyên sư phạm Hà Nội.
Em xin nhờ quý thầy cô giáo và các bạn giúp đỡ, em cám ơn nhiều ạ!
Cho các số dương a,b,c thoả mãn abc=1. Chứng minh rằng \(\dfrac{a+b+c}{2}\ge\dfrac{1}{\left(a+b\right)c}+\dfrac{1}{\left(b+c\right)a}+\dfrac{1}{\left(c+a\right)b}\)
Chứng minh các bất đẳng thức sau :
1. \(\dfrac{a}{\sqrt{b}}+\dfrac{b}{\sqrt{a}}\ge\sqrt{a}+\sqrt{b}\) ( với a,b>0 )
2. \(\dfrac{1}{\dfrac{1}{a+c}+\dfrac{1}{b+a}}\ge\dfrac{1}{\dfrac{1}{a}+\dfrac{1}{\dfrac{1}{b}}}+\dfrac{1}{\dfrac{1}{c}+\dfrac{1}{d}}\) ( với a,b,c,d>0)
3. a3 + b3 \(\ge\) \(\dfrac{1}{4}\) ( với a+b\(\ge1\) )
Cho ba số thực dương a; b và c thỏa mãn : \(a.b.c=1\)
Chứng minh rằng : \(\dfrac{a}{(ab+a+1)^2}+\dfrac{b}{(bc+b+1)^2}+\dfrac{c}{(ac+c+1)^2}\ge\dfrac{1}{a+b+c}\)
P/s: Em xin phép nhờ quý thầy cô giáo và các bạn giúp đỡ, em cám ơn nhiều ạ!
Cho a, b, c, d là những số dương.
Chứng minh rằng :
\(\dfrac{a+b+c+d}{4}\ge\sqrt[4]{abcd}\)