Áp dụng bất đẳng thức Cauchy - Schwarz dạng phân thức
\(\Rightarrow\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\ge\dfrac{\left(1+1+1\right)^2}{a+b+c}=\dfrac{9}{a+b+c}\)
Dấu " = " xảy ra khi \(a=b=c=1\)
Áp dụng bất đẳng thức Cauchy - Schwarz dạng phân thức
\(\Rightarrow\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\ge\dfrac{\left(1+1+1\right)^2}{a+b+c}=\dfrac{9}{a+b+c}\)
Dấu " = " xảy ra khi \(a=b=c=1\)
Cho a, b, c, d là những số dương.
Chứng minh rằng :
\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}+\dfrac{1}{d}\ge\dfrac{16}{a+b+c+d}\)
Cho a, b, c, d là những số dương.
Chứng minh rằng :
\(\dfrac{1}{a}+\dfrac{1}{b}\ge\dfrac{4}{a+b}\)
Cho các số dương a,b,c thoả mãn abc=1. Chứng minh rằng \(\dfrac{a+b+c}{2}\ge\dfrac{1}{\left(a+b\right)c}+\dfrac{1}{\left(b+c\right)a}+\dfrac{1}{\left(c+a\right)b}\)
Cho \(a;b;c\) là các số thực dương thỏa mãn :\(0< a;b;c< 1\). Chứng minh rằng:
\(\dfrac{1}{a.\left(1-b\right)}+\dfrac{1}{b.\left(1-c\right)}+\dfrac{1}{c.\left(1-a\right)}\ge\dfrac{3}{1-\left(a+b+c\right)+ab+bc+ac}\)
P/s: Đề cương toán lớp 10 trường THPT chuyên sư phạm Hà Nội.
Em xin nhờ quý thầy cô giáo và các bạn giúp đỡ, em cám ơn nhiều ạ!
Cho ba số thực dương a; b và c thỏa mãn : \(a.b.c=1\)
Chứng minh rằng : \(\dfrac{a}{(ab+a+1)^2}+\dfrac{b}{(bc+b+1)^2}+\dfrac{c}{(ac+c+1)^2}\ge\dfrac{1}{a+b+c}\)
P/s: Em xin phép nhờ quý thầy cô giáo và các bạn giúp đỡ, em cám ơn nhiều ạ!
Cho a,b,c là các số dương. Chứng minh rằng:
\(\dfrac{a+b+c}{\sqrt[3]{abc}}\)+\(\dfrac{8abc}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\)\(\ge\)4
Cho a, b, c > 0 và abc = 1. Chứng minh rằng \(\dfrac{1}{a^2.\left(b+c\right)}+\dfrac{1}{b^2.\left(c+a\right)}+\dfrac{1}{c^2.\left(a+b\right)}\ge\dfrac{3}{2}\)
Cho a,b,c>0.Chứng minh rằng:
\(\dfrac{a+b}{a^2+b^2}+\dfrac{b+c}{b^2+c^2}+\dfrac{a+c}{a^2+c^2}\ge\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\)
Help me?!
Cho các số thực dương \(a;b;c;d\) thỏa mãn :\(a+b+c+d=4\). Chứng minh rằng :
\(\dfrac{1}{a^2+b+c+d}+\dfrac{1}{b^2+c+d+a}+\dfrac{1}{c^2+d+a+b}+\dfrac{1}{d^2+a+b+c}\le1\)
P/s: Em nhờ quý thầy cô giáo và các bạn hỗ trợ giúp đỡ với ạ!
Em cám ơn nhiều lắm ạ!