-Hoặc có thể đề bạn sai
hiểu đơn giản thì có thể hiểu như sau:
\(a^3+b^3+c^3\ge3\sqrt[3]{a^3b^3c^3}=3abc>abc\)
-Không có a;b;c thỏa mãn
-Hoặc có thể đề bạn sai
hiểu đơn giản thì có thể hiểu như sau:
\(a^3+b^3+c^3\ge3\sqrt[3]{a^3b^3c^3}=3abc>abc\)
-Không có a;b;c thỏa mãn
Xét:
\(\dfrac{c}{a-b}.\left(\dfrac{a-b}{c}+\dfrac{b-c}{a}+\dfrac{c-a}{b}\right)=1+\dfrac{c}{a-b}\left(\dfrac{b-c}{a}+\dfrac{c-a}{b}\right)=1+\dfrac{c}{a-b}.\dfrac{b^2-bc+ac-a^2}{ab}=1+\dfrac{c}{a-b}.\dfrac{c\left(a-b\right)-\left(a^2-b^2\right)}{ab}=1+\dfrac{c}{a-b}.\dfrac{\left(c-a-b\right)\left(a-b\right)}{ab}=1+\dfrac{c^2-c\left(a+b\right)}{ab}=1+\dfrac{2c^2}{ab}=1+\dfrac{2c^3}{abc}\)
CMTT cộng theo vế:
\(BTCCM=3+\dfrac{2\left(a^3+b^3+c^3\right)}{abc}=\dfrac{6\left(a^3+b^3+c^3\right)}{3abc}\)
Mà Khi \(a+b+c=0\) thì \(a^3+b^3+c^3=3abc\) ( tự cm,ez)
Vậy \(BTCCM=3+6=9\left(đpcm\right)\)
Cho a,b, c>0 thỏa mãn a+b+c=3.
CMR: \(\dfrac{a^3}{\left(a+1\right)\left(b+1\right)}+\dfrac{b^3}{\left(b+1\right)\left(c+1\right)}+\dfrac{c^3}{\left(c+1\right)\left(a+1\right)}>=\dfrac{3}{4}\)
Cho 3 số a, b, c khác nhau đôi một và \(\dfrac{a+b}{c}=\dfrac{b+c}{a}=\dfrac{c+a}{b}\). Tính giá trị của biểu thức: \(M=\left(1+\dfrac{a}{b}\right).\left(1+\dfrac{b}{c}\right).\left(1+\dfrac{c}{a}\right)\)
CMR nếu \(\left(a^2-bc\right).\left(b-abc\right)=\left(b^2-ac\right).\left(a-abc\right)\) và các số a, b, c, a-b khác 0 thì \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=a+b+c\)
Cho: \(\left(a+b+c\right)^2=a^2+b^2+c^2\) và a, b, c khác 0. CMR: \(\dfrac{1}{a^3}+\dfrac{1}{b^3}+\dfrac{1}{c^3}=\dfrac{3}{abc}\)
Cho: \(\left(a+b+c\right)^2=a^2+b^2+c^2\) và a,b, c khác 0. CMR: \(\dfrac{1}{a^3}+\dfrac{1}{b^3}+\dfrac{1}{c^3}=\dfrac{3}{abc}\)
Cho \(a^3+b^3+c^3=3abc\)
\(\left(a;b;c\right)>0\) và khác 0
Tính \(\left(1+\dfrac{a}{b}\right)\left(1+\dfrac{b}{c}\right)\left(1+\dfrac{a}{c}\right)\)
1.Cho \(a,b,c,d\) là các số nguyên thỏa mãn \(a^3+b^3=2\left(c^3-d^3\right)\) . Chứng minh rằng a+b+c+d chia hết cho 3
2.Cho ba số dương a,b,c thỏa mãn abc=1. Chứng minh rằng \(\dfrac{1}{a^3\left(b+c\right)}+\dfrac{1}{b^3\left(c+a\right)}+\dfrac{1}{c^3\left(a+b\right)}\ge\dfrac{3}{2}\)
Cho a,b,c là các số nguyên khác nhau đôi một. CMR biểu thức sau có giá trị là 1 số nguyên: \(P=\dfrac{a^3}{\left(a-b\right).\left(a-c\right)}+\dfrac{b^3}{\left(b-a\right).\left(b-c\right)}+\dfrac{c^3}{\left(c-a\right).\left(c-b\right)}\)