\(a+b+c=0\)
\(a+b=-c\)
\(\left(a+b\right)^3=\left(-c\right)^3\)
\(a^3+3a^2b+3ab^2+b^3=-c^3\)
\(a^3+b^3+c^3=-3ab\left(a+b\right)\)
\(a^3+b^3+c^3=-3ab\left(-c\right)\)
\(a^3+b^3+c^3=3abc\left(1\right)\)
\(P=\dfrac{a^2}{bc}+\dfrac{b^2}{ac}+\dfrac{c^2}{ab}\)
\(P=\dfrac{a^3}{abc}+\dfrac{b^3}{abc}+\dfrac{c^3}{abc}\)
\(P=\dfrac{a^3+b^3+c^3}{abc}\)
Thay (1) vào P ta được :
\(P=\dfrac{3abc}{abc}=3\)
Vậy.......