Chương I - Căn bậc hai. Căn bậc ba

Cho a, b, c > 0 thỏa mãn abc = 1.

CMR : \(\dfrac{b^2}{a}+\dfrac{c^2}{b}+\dfrac{a^2}{c}+\dfrac{9}{2ab+2bc+2ac}\ge\dfrac{9}{2}\)

Neet
7 tháng 1 2018 lúc 23:04

\(VT\ge a+b+c+\dfrac{9}{2\left(ab+bc+ca\right)}\ge\sqrt{3\left(ab+bc+ca\right)}+\dfrac{9}{2\left(ab+bc+ca\right)}\)

\(=\dfrac{\sqrt{3\left(ab+bc+ca\right)}}{2}+\dfrac{\sqrt{3\left(ab+bc+ca\right)}}{2}+\dfrac{9}{2\left(ab+bc+ca\right)}\ge3\sqrt[3]{\dfrac{27}{8}}=\dfrac{9}{2}\)

Bình luận (0)
Hà Nam Phan Đình
7 tháng 1 2018 lúc 18:20

Áp dụng BĐT Cauchy ta có

\(\dfrac{b^2}{a}+a\ge2b;\) \(\dfrac{c^2}{b}+b\ge2c\); \(\dfrac{a^2}{c}+c\ge2a\)

\(\Rightarrow\dfrac{b^2}{a}+\dfrac{c^2}{b}+\dfrac{a^2}{c}\ge a+b+c\)

\(\Rightarrow\dfrac{b^2}{a}+\dfrac{c^2}{b}+\dfrac{a^2}{c}+\dfrac{9}{2\left(ab+bc+ac\right)}\ge a+b+c+\dfrac{9}{2\left(ab+bc+ac\right)}\)Ta phải chứng minh

\(a+b+c+\dfrac{9}{2\left(ab+bc+ac\right)}\ge\dfrac{9}{2}\)

\(\Leftrightarrow4\left(a+b+c\right)\left(ab+bc+ac\right)+18\ge18\left(ab+bc+ac\right)\)

\(\Leftrightarrow\left(ab+bc+ac\right)\left(4\left(a+b+c\right)-18\right)+18\ge0\)

Áp dụng BĐT Cauchy:

\(ab+bc+ac\ge3\sqrt[3]{a^2b^2c^2}=3\)

\(a+b+c\ge3\sqrt[3]{abc}=3\)

\(\Rightarrow\left(ab+bc+ac\right)\left(4\left(a+b+c\right)-18\right)+18\ge3\left(4.3-18\right)+18=0\)=> đpcm

Bình luận (0)

Các câu hỏi tương tự
Lê Nguyễn Phương Hà
Xem chi tiết
Lâm Tinh Thần
Xem chi tiết
Kresol♪
Xem chi tiết
Nấm Chanel
Xem chi tiết
Xem chi tiết
Hoàng
Xem chi tiết
ZoZ - Kudo vs Conan - Zo...
Xem chi tiết
Xem chi tiết
Nguyễn Đức Thịnh
Xem chi tiết