Violympic toán 8

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Đặng Phương Nga

Cho a , b , c > 0 . CMR : \(\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}< \sqrt{\frac{a}{b+c}}+\sqrt{\frac{b}{c+a}}+\sqrt{\frac{c}{a+b}}\)

Hoàng Thị Ánh Phương
27 tháng 2 2020 lúc 8:49

Với a,b,c > 0 ta có :
\(\sqrt{\frac{a}{b+c}}=\frac{a}{\sqrt{a\left(b+c\right)}}\ge\frac{a}{\frac{a+\left(b+c\right)}{2}}=\frac{2a}{a+b+c}\)( Áp dụng \(\sqrt{xy}\le\frac{x+y}{2}\) )

Tương tự ta cũng có :

\(\sqrt{\frac{b}{c+a}}\ge\frac{2b}{a+b+c};\sqrt{\frac{c}{a+b}}\ge\frac{2c}{a+b+c}\)

Cộng 3 bất đẳng thức trên vế với vế , ta được :
\(\sqrt{\frac{a}{b+c}}+\sqrt{\frac{b}{c+a}}+\sqrt{\frac{c}{a+b}}\ge\frac{2\left(a+b+c\right)}{a+b+c}=2\)

Dấu " = " xay ra khi \(\left\{{}\begin{matrix}a=b+c\\b=c+a\\c=a+b\end{matrix}\right.\), vô nghiệm vì a,b,c >0

Do đó : \(\sqrt{\frac{a}{b+c}}+\sqrt{\frac{b}{c+a}}+\sqrt{\frac{c}{a+b}}>2\left(1\right)\)

Lại có :

\(\frac{a}{a+b}< \frac{a+c}{a+b+c};\frac{b}{b+c}< \frac{b+a}{a+b+c};\frac{c}{c+a}< \frac{c+b}{a+b+c}\)

Cộng lại ta được :

\(\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}< \frac{2\left(a+b+c\right)}{a+b+c}=2\left(2\right)\)

Từ (1) và (2 ) \(\Rightarrowđpcm\)

Chúc bạn học tốt !!

Khách vãng lai đã xóa

Các câu hỏi tương tự
CCDT
Xem chi tiết
dbrby
Xem chi tiết
DRACULA
Xem chi tiết
๖ۣۜDũ๖ۣۜN๖ۣۜG
Xem chi tiết
dbrby
Xem chi tiết
Trần Anh Thơ
Xem chi tiết
๖ۣۜDũ๖ۣۜN๖ۣۜG
Xem chi tiết
Minecraftboy01
Xem chi tiết
Trần Anh Thơ
Xem chi tiết