cho: \(\frac{a}{b-c}+\frac{b}{c-a}+\frac{c}{a-b}=0\) . CMR: \(\frac{a}{\left(b-c\right)^2}+\frac{b}{\left(c-a\right)^2}+\frac{c}{\left(a-b\right)^2}=0\)
Cho 3 số thực a,b,c thỏa mãn \(\frac{a}{b-c}+\frac{b}{c-a}+\frac{c}{a-b}\) = 0. CMR
\(\frac{a}{\left(b-c\right)^2}+\frac{b}{\left(c-a\right)^2}+\frac{c}{\left(a-b\right)^2}\) = 0
Cho a,b,c là 3 số thực thỏa mãn \(\frac{a}{b-c}+\frac{b}{c-a}+\frac{c}{a-b}\). CMR : \(\frac{a}{\left(b-c\right)^2}+\frac{b}{\left(c-a\right)^2}+\frac{c}{\left(a-b\right)^2}=0\)
Cho 3 số thực a , b , c là 3 số phân biệt khác 0 và a+b+c=0 . Chứng minh \(\left(\frac{a}{b-c}+\frac{b}{c-a}+\frac{c}{a-b}\right)\left(\frac{b-c}{a}+\frac{c-a}{b}+\frac{a-b}{c}\right)=9\)
Chứng minh rằng :Nếu a+b+c=0 thì
Q=\(\left(\frac{a-b}{c}+\frac{b-c}{a}+\frac{c-a}{b}\right)\left(\frac{c}{a-b}+\frac{a}{b-c}+\frac{b}{c-a}\right)\)=9
cho a,b,c>0 và a+b+c=1. Cmr:
\(\frac{a^2}{a^2+\left(b+c\right)^2}+\frac{b^2}{b^2+\left(a+c\right)^2}+\frac{c^2}{c^2+\left(a+b\right)^2}\ge\frac{3}{5}\)
Cho a, b, c là 3 số thực dương. CMR
\(\frac{\left(a+b\right)^2}{ab}+\frac{\left(b+c\right)^2}{bc}+\frac{\left(c+a\right)^2}{ca}\ge9+2\left(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\right)\)
Cho a,b,c > 0. CMR P = \(\frac{a^2}{b\left(b+2c\right)}+\frac{b^2}{c\left(c+2a\right)}+\frac{c^2}{a\left(a+2b\right)}\) ≥ 1
Cho a,b,c là độ dài ba cạnh của một tam giác.
CMR: \(\left|\left(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\right)-\left(\frac{a}{c}+\frac{c}{b}+\frac{b}{a}\right)\right|< 1\)