Violympic toán 8

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
dbrby

cho a,b,c>0 và a+b+c=1. Cmr:

\(\frac{a^2}{a^2+\left(b+c\right)^2}+\frac{b^2}{b^2+\left(a+c\right)^2}+\frac{c^2}{c^2+\left(a+b\right)^2}\ge\frac{3}{5}\)

Trần Phúc Khang
4 tháng 7 2019 lúc 15:57

Ta có \(\left(b+c\right)^2\le2\left(b^2+c^2\right)\)

=> \(\frac{a^2}{a^2+\left(b+c\right)^2}\ge\frac{a^2}{a^2+2b^2+c^2}\)

=> \(VT\ge\Sigma\frac{a^4}{a^4+2b^2a^2+2a^2c^2}\ge\frac{\left(a^2+b^2+c^2\right)^2}{a^4+b^4+c^4+4\left(a^2b^2+b^2c^2+c^2a^2\right)}\)

=> \(VT\ge\frac{\left(a^2+b^2+c^2\right)^2}{\left(a^2+b^2+c^2\right)^2+2\left(a^2b^2+b^2c^2+a^2c^2\right)}\ge\frac{\left(a^2+b^2+c^2\right)^2}{\left(a^2+b^2+c^2\right)^2+\frac{2}{3}\left(a^2+b^2+c^2\right)^2}=\frac{3}{5}\)(ĐPCM)

Dấu bằng xảy ra khi a=b=c


Các câu hỏi tương tự
Trần Anh Thơ
Xem chi tiết
Trần Anh Thơ
Xem chi tiết
Trần Anh Thơ
Xem chi tiết
Trần Quý
Xem chi tiết
 nguyễn hà
Xem chi tiết
Trần Anh Thơ
Xem chi tiết
Linh nè
Xem chi tiết
Xuan Xuannajimex
Xem chi tiết
mr. killer
Xem chi tiết