Lời giải:
Đặt \((\frac{a-b}{c}, \frac{b-c}{a}, \frac{c-a}{b})=(x,y,z)\)
Khi đó:
\(Q=(x+y+z)\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)=3+\frac{x+y}{z}+\frac{y+z}{x}+\frac{z+x}{y}\)
Ta có:
\(x+y=\frac{a-b}{c}+\frac{b-c}{a}=\frac{a^2-ab+bc-c^2}{ac}=\frac{b(c-a)-(c-a)(c+a)}{ca}\)
\(=\frac{b(c-a)-(c-a)(-b)}{ac}=\frac{2b(c-a)}{ca}\) (do $a+b+c=0$)
\(\Rightarrow \frac{x+y}{z}=\frac{2b(c-a)}{ca}.\frac{b}{c-a}=\frac{2b^2}{ca}=\frac{2b^3}{abc}\)
Hoàn toàn tương tự:
\(\frac{y+z}{x}=\frac{2c^3}{abc}; \frac{x+z}{y}=\frac{2a^3}{abc}\)
Do đó:
\(Q=3+\frac{x+y}{z}+\frac{y+z}{x}+\frac{x+z}{y}=3+\frac{2(a^3+b^3+c^3)}{abc}=3+\frac{2[(a+b)^3-3ab(a+b)+c^3]}{abc}\)
\(=3+\frac{2[(-c)^3-3ab(-c)+c^3]}{abc}=3+\frac{2.3abc}{abc}=3+6=9\)
Ta có đpcm.