\(a^3-b^3=2018^3\)
\(\Leftrightarrow\left(a-b\right)^3+3ab\left(a+b\right)=2018^3\)
\(\Leftrightarrow2018^3+3ab\left(a-b\right)=2018^3\)
\(\Leftrightarrow ab\left(a-b\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}ab=0\\a=b\end{matrix}\right.\)
*Với ab=0:
\(B=a^4-b^4\)
\(B=\left(a^2+b^2\right)^2-2a^2b^2\)
\(B=\left[\left(a-b\right)^2+2ab\right]^2-2a^2b^2=\left(a-b\right)^4=2018^4\)
*Với a=b:
\(B=a^4-a^4=0\)