Cho 3 số tự nhiên abc thỏa mãn abc=123^345
Tìm dư của phép chia a^30+b^4+c^2020 cho 8
Cho a b c thuộc z thỏa mãn a +b + c = 123 tìm số dư của phép chia a^2-b^2+c^2 cho 2
1.Cho \(a,b,c,d\) là các số nguyên thỏa mãn \(a^3+b^3=2\left(c^3-d^3\right)\) . Chứng minh rằng a+b+c+d chia hết cho 3
2.Cho ba số dương a,b,c thỏa mãn abc=1. Chứng minh rằng \(\dfrac{1}{a^3\left(b+c\right)}+\dfrac{1}{b^3\left(c+a\right)}+\dfrac{1}{c^3\left(a+b\right)}\ge\dfrac{3}{2}\)
Cho các số thực a,b,c thỏa mãn \(a^2+b^2+c^2=3\) và \(a+b+c+ab+bc+ca=6\)
Tính giá trị biểu thức : A=\(\dfrac{a^{30}+b^4+c^{1975}}{a^{30}+b^4+c^{2019}}\)
Cho các số thực dương a, b, c thỏa mãn \(a^2+b^2+c^2+abc=4\). Tìm GTNN của biểu thức \(P=\dfrac{ab}{a+2b}+\dfrac{bc}{b+2c}+\dfrac{ca}{c+2a}\)
cho a,b,c ≥ 0 thỏa mãn a2 + b2 + c2 ≤ 8. Tìm GTLN của
\(M=4\left(a^3+b^3+c^3\right)-\left(a^4+b^4+c^4\right)\)
Cho 3 số nguyên a, b, c thỏa mãn: a-b+c= 2016. CMR: a^3-b^3+c^3 chia hết cho 3
1. Giải phương trình\(x^2+\dfrac{x^2}{\left(x+1\right)^2}=\dfrac{5}{4}\)
2.Tìm số tự nhiên n để \(n^2+5n+12\) là một số chính phương
3.Tìm các hằng số a và b sao cho \(2x^3+ax+b\) chia cho x+1 dư 6 , chia cho x-2 dư 21
4. Cho các số thực a,b,c thỏa mãn \(a^2+b^2+c^2=ab+bc+ca\) và \(a^{2017}+b^{2017}+c^{2017}=9^{1009}\) . Tính Giá trị biểu thức \(P=\left(a-2\right)^{2018}+\left(b-3\right)^{2019}+\left(c-4\right)^{2020}\)
cho a, b, c là các số nguyên dương thỏa mãn \(ab+bc+ca+2\left(a+b+c\right)=8045\) và \(abc-a-b-c=-2\). tìm a+b+c