Giải:
Ta có: \(a_2^2=a_1a_3\Rightarrow\dfrac{a_1}{a_2}=\dfrac{a_2}{a_3}\)
\(a_3^2=a_2a_4\Rightarrow\dfrac{a_2}{a_3}=\dfrac{a_3}{a_4}\)
\(\Rightarrow\dfrac{a_1}{a_2}=\dfrac{a_2}{a_3}=\dfrac{a_3}{a_4}\)
\(\Rightarrow\dfrac{a_1^3}{a_2^3}=\dfrac{a_2^3}{a_3^3}=\dfrac{a_3^3}{a_4^3}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{a_1^3}{a_2^3}=\dfrac{a_2^3}{a_3^3}=\dfrac{a_3^3}{a_4^3}=\dfrac{a_1^3+a_2^3+a_3^3}{a_2^3+a_3^3+a_4^3}\)
\(\dfrac{a_1^3}{a_2^3}=\left(\dfrac{a_1}{a_2}\right)^3=\dfrac{a_1}{a_2}.\dfrac{a_2}{a_3}.\dfrac{a_3}{a_4}=\dfrac{a_1}{a_4}\)
\(\Rightarrow\dfrac{a_1^3+a_2^3+a_3^3}{a_2^3+a_3^3+a_4^3}=\dfrac{a_1}{a_4}\left(đpcm\right)\)
Vậy...
Theo bài ra:
\(a_1,a_2,a_3,a_4\ne0\) thỏa mãn \(\left\{{}\begin{matrix}a_2^2=a_1a_3\\a_3^2=a_2a_4\end{matrix}\right.\)
Ta có:
\(\dfrac{a_1}{a_2}=\dfrac{a_2}{a_3}=\dfrac{a_3}{a_4}\)
\(\Rightarrow\dfrac{a^3_1}{a^3_2}=\dfrac{a_2^3}{a^3_3}=\dfrac{a^3_3}{a^3_4}=\dfrac{a_1}{a_2}.\dfrac{a_2}{a_3}.\dfrac{a_3}{a_4}=\dfrac{a_1}{a_4}\left(1\right)\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{a^3_1}{a^3_2}=\dfrac{a_2^3}{a^3_3}=\dfrac{a^3_3}{a^3_4}=\dfrac{a^3_1+a_2^3+a_3^3}{a_2^3+a_3^3+a^3_4}\left(2\right)\)
Từ \(\left(1\right)\) và \(\left(2\right)\) suy ra:
\(\dfrac{a^3_1+a_2^3+a_3^3}{a_2^3+a_3^3+a^3_4}=\dfrac{a_1}{a_4}\) (Đpcm)