1 nếu \(\int_0^2\) f(x)dx=-10 thì \(\int_0^2f\left(2x\right)dx\) bằng
2 cho số phức z thỏa z+\(\)\(z+3\overline{z}=8+14i\). Phần ảo của số phức đã cho bằng
3 diện tích hình phẳng giói hạn bỏi các đường y =lnx, y=0, x=\(\frac{1}{e}\) và x=e
4 biết \(\int_0^{\frac{\pi}{3}}f\left(x\right)=4\) , giá trị của \(\int_0^{\frac{\pi}{3}}\left[f\left(x\right)+2sinx\right]dx\)
5 cho hai số thực x và y thỏa mãn (4x+y)+(y-x)i=(x+2y-6)+(3x-1)i với i là đơn vị ảo . Gía trị của 6x-y bằng
6 họ tất cả nguyên hàm của hàm số f(x)=\(\frac{x+2}{x+1}\) trên khoảng (-1,\(+\infty\)) là
7 trong ko gian Oxyz, cho hai điểm M (-3;1;2) và N (1;3;-3) , mat95 phẳng vuông góc với MN tại điểm M có pt là
8 cho hình nón có chiều cao bằng \(a\sqrt{6}\) và thiết diện đi qua trục của khối nón đó là tam giác đều, thể tích khối nón bằng
9 cho số phức z thỏa mãn 2(\(\overline{z}\) +i)+(2+i)z=6+5i. Mô đun của số phức z bằng
10 trong ko gian Oxyz, cho \(\overline{a}\left(2;3;-1\right),\overline{b}\left(-1;0;2\right)\) . Tính \(\overrightarrow{a}\left(\overrightarrow{a}+\overrightarrow{b}\right)\)
11 họ tất cả các nguyên hàm của hàm số f(x) =x^4 -3e^x là
12 cho hình chóp tứ giác đều có tất cả các cạnh bằng 2a. Diện tích mặt cầu ngoại tiếp hình chóp đã cho bằng
13 cho hàm số f(x) liên tục trên R , biết e^X là một nguyên hàm của hàm số \(f\left(x\right)e^{-x}\) . Họ tất cả các nguyên hàm của hàm số x.\(f^,\left(x\right)là\)
14 biết\(\int\frac{dx}{e^x+e^{-x}+2}\) =\(a\left(e^x+1\right)^b+C\) với a,b,c \(\in Z\) . Tính S=2a-3b
15 họ tất cả các nguyên hàm của ham số y =6xlnx trên khoảng \(\left(0;+\infty\right)\) là
16 cho hình trụ có chiều cao bằng 4a. Biết rằng khi cắt hình trụ bởi một mặt phẳng song song với trục và cách trục một khoảng 2a, thiết diện thu dc là một hình vuông. Thể tích khối trụ dc giới hạn bởi hình trụ đã cho bằng
17 trong ko gian oxyz, cho điểm M (1;-3;2) và mặt phang73 (P) :x-3y-2z+5=0 , biết mặt phẳng (Q) :ax-2y+bz-7=0 đi qua M và vuông góc (P) , giá trị của 3a+2b bằng
18 cho hình nón có bán kính bằng \(a\sqrt{3}\) và chiêu cao a. Một mp thay đổi qa đỉnh nón và cắt hình nón theo thiết diện là tam giác cân. Tính diện tích lớn nhất tam giác cân đó