Vì x+y+z=0;xy+yz+xz=0
⇒(x+y+z)2=x2+y2+z2+2(xy+yz+xz)=0
⇒(x+y+z)2=x2+y2+z2=0
⇒x=y=z=0
⇒S=(x−1)2005+(y−1)2006+(z+1)2007=(−1)2005+(−1)2006+12007=1
Vì x+y+z=0;xy+yz+xz=0
⇒(x+y+z)2=x2+y2+z2+2(xy+yz+xz)=0
⇒(x+y+z)2=x2+y2+z2=0
⇒x=y=z=0
⇒S=(x−1)2005+(y−1)2006+(z+1)2007=(−1)2005+(−1)2006+12007=1
Cho x,y,z đôi một khác nhau và \(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=0\). Tính giá trị của biểu thức: \(A=\dfrac{yz}{x^2+2yz}+\dfrac{xz}{y^2+2xz}+\dfrac{xy}{z^2+2xy}\)
Cho a,b,x,y,z là các số khác 0 thỏa mãn: \(\dfrac{x^2-yz}{a}=\dfrac{y^2-zx}{b}=\dfrac{z^2-xy}{c}\ne0\). Tìm x, y, z biết x+y+z=2010 và \(a^2-bc=0\)
Cho a,b,x,y,z là các số khác 0 thỏa mãn: \(\dfrac{x^2-yz}{a}=\dfrac{y^2-zx}{b}=\dfrac{z^2-xy}{c}\ne0\). Tìm x, y, z biết x+y+z=2010 và \(a^2-bc=0\)
1,cho ba số thưc x,y,z khác 0 và khác nhau thỏa mãn \(\frac{x^2}{yz}+\frac{y^2}{zx}+\frac{z^2}{xy}=3\)
Tính giá trị của biểu thức:\(P=\left(1+\frac{x}{y}\right)\left(1+\frac{y}{z}\right)\left(1+\frac{z}{x}\right)\)
Cho 3 số x,y,z thỏa mãn x+y+z =3. Giá trị lớn nhất của biểu thức P = xy+yz+zx ?
Cho \(x,y,z\ne-1\). Giá trị của biểu thức \(A=\dfrac{xy+2x+1}{xy+x+y+1}+\dfrac{yz+2y+1}{yz+y+z+1}+\dfrac{zx+2x+1}{zx+x+z+1}\).
cho ba số x,y,z thỏa mãn x+y+z=3 giá trị lớn nhất của biểu thức P =xy+yz+zx là