Có: \(\dfrac{y+z-x}{x}=\dfrac{x+z-y}{y}=\dfrac{x+y-z}{z}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{y+z-x}{x}=\dfrac{x+z-y}{y}=\dfrac{x+y-z}{z}=\dfrac{x+y+z}{x+y+z}=1\)
Vì
\(\dfrac{y+z-x}{x}=\dfrac{z+x-y}{y}=\dfrac{x+y+z}{z}\)
\(\Rightarrow\dfrac{y+z-x}{x}+2=\dfrac{z+x-y}{y}+2=\dfrac{x+y-z}{z}+2=\)
\(\dfrac{y+z+x}{x}=\dfrac{z+x+y}{y}=\dfrac{x+y+z}{z}\)
\(\Rightarrow\)x=y=z\(\Rightarrow\)\(\dfrac{x}{y}=\dfrac{y}{z}=\dfrac{z}{x}=1\)
\(\Rightarrow\)B=(1+1)(1+1)(1+1)=8